Properties

Label 2-546-13.9-c1-0-2
Degree $2$
Conductor $546$
Sign $0.522 - 0.852i$
Analytic cond. $4.35983$
Root an. cond. $2.08802$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 − 0.866i)2-s + (−0.5 + 0.866i)3-s + (−0.499 − 0.866i)4-s − 2·5-s + (0.499 + 0.866i)6-s + (0.5 + 0.866i)7-s − 0.999·8-s + (−0.499 − 0.866i)9-s + (−1 + 1.73i)10-s + (−1.5 + 2.59i)11-s + 0.999·12-s + (3.5 − 0.866i)13-s + 0.999·14-s + (1 − 1.73i)15-s + (−0.5 + 0.866i)16-s + (3.5 + 6.06i)17-s + ⋯
L(s)  = 1  + (0.353 − 0.612i)2-s + (−0.288 + 0.499i)3-s + (−0.249 − 0.433i)4-s − 0.894·5-s + (0.204 + 0.353i)6-s + (0.188 + 0.327i)7-s − 0.353·8-s + (−0.166 − 0.288i)9-s + (−0.316 + 0.547i)10-s + (−0.452 + 0.783i)11-s + 0.288·12-s + (0.970 − 0.240i)13-s + 0.267·14-s + (0.258 − 0.447i)15-s + (−0.125 + 0.216i)16-s + (0.848 + 1.47i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.522 - 0.852i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.522 - 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(546\)    =    \(2 \cdot 3 \cdot 7 \cdot 13\)
Sign: $0.522 - 0.852i$
Analytic conductor: \(4.35983\)
Root analytic conductor: \(2.08802\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{546} (295, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 546,\ (\ :1/2),\ 0.522 - 0.852i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.951895 + 0.533420i\)
\(L(\frac12)\) \(\approx\) \(0.951895 + 0.533420i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.5 + 0.866i)T \)
3 \( 1 + (0.5 - 0.866i)T \)
7 \( 1 + (-0.5 - 0.866i)T \)
13 \( 1 + (-3.5 + 0.866i)T \)
good5 \( 1 + 2T + 5T^{2} \)
11 \( 1 + (1.5 - 2.59i)T + (-5.5 - 9.52i)T^{2} \)
17 \( 1 + (-3.5 - 6.06i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-2.5 - 4.33i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (3 - 5.19i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (2.5 - 4.33i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + 2T + 31T^{2} \)
37 \( 1 + (-1 + 1.73i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-2.5 + 4.33i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (1 + 1.73i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + T + 47T^{2} \)
53 \( 1 - 3T + 53T^{2} \)
59 \( 1 + (-3 - 5.19i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (3.5 + 6.06i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (1 - 1.73i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (4 + 6.92i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 - 12T + 73T^{2} \)
79 \( 1 - 3T + 79T^{2} \)
83 \( 1 + 8T + 83T^{2} \)
89 \( 1 + (-5.5 + 9.52i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-1 - 1.73i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.91869553175966774889983300169, −10.32325243113912091357313005013, −9.409708751412211656811195109736, −8.269359884234608100526984308962, −7.55732539444222454888822464511, −5.96796075785326318956480746654, −5.31500453266636992787214858619, −3.95479812152735622769408245243, −3.51591198556472570128822410650, −1.65863679382763934301921949707, 0.61532203724314882280337745184, 2.90547099722922512681147123474, 4.05576567797439646211974910588, 5.13424848244794757573149239640, 6.10907682108428761318302572605, 7.11278464674031947396722552039, 7.83248590751686316444717867924, 8.491755179740161768005793488727, 9.678484090225954888735881446096, 11.06983418179630248415065272205

Graph of the $Z$-function along the critical line