L(s) = 1 | + (0.866 + 0.5i)2-s + (0.5 − 0.866i)3-s + (0.499 + 0.866i)4-s + 1.78i·5-s + (0.866 − 0.499i)6-s + (0.866 − 0.5i)7-s + 0.999i·8-s + (−0.499 − 0.866i)9-s + (−0.894 + 1.54i)10-s + (2.74 + 1.58i)11-s + 0.999·12-s + (1.47 − 3.28i)13-s + 0.999·14-s + (1.54 + 0.894i)15-s + (−0.5 + 0.866i)16-s + (2.78 + 4.81i)17-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.288 − 0.499i)3-s + (0.249 + 0.433i)4-s + 0.799i·5-s + (0.353 − 0.204i)6-s + (0.327 − 0.188i)7-s + 0.353i·8-s + (−0.166 − 0.288i)9-s + (−0.282 + 0.489i)10-s + (0.828 + 0.478i)11-s + 0.288·12-s + (0.410 − 0.911i)13-s + 0.267·14-s + (0.399 + 0.230i)15-s + (−0.125 + 0.216i)16-s + (0.674 + 1.16i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.803 - 0.594i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.803 - 0.594i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.25951 + 0.745257i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.25951 + 0.745257i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 13 | \( 1 + (-1.47 + 3.28i)T \) |
good | 5 | \( 1 - 1.78iT - 5T^{2} \) |
| 11 | \( 1 + (-2.74 - 1.58i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.78 - 4.81i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (5.36 - 3.09i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.06 + 5.31i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.03 - 1.79i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 5.63iT - 31T^{2} \) |
| 37 | \( 1 + (2.68 + 1.54i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.29 + 0.749i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4.81 + 8.34i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 10.5iT - 47T^{2} \) |
| 53 | \( 1 - 3.60T + 53T^{2} \) |
| 59 | \( 1 + (2.40 - 1.39i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.844 + 1.46i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (10.0 + 5.77i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (0.518 - 0.299i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 0.423iT - 73T^{2} \) |
| 79 | \( 1 - 6.96T + 79T^{2} \) |
| 83 | \( 1 + 4.30iT - 83T^{2} \) |
| 89 | \( 1 + (14.1 + 8.14i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (15.1 - 8.74i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.68229191528527728150875375908, −10.43948038058133692589772253647, −8.742029056583244740512454014891, −8.162461478709186409087643117594, −7.01680028345813122810977158556, −6.52420849918109294422129972626, −5.45656909815578690205575662469, −4.06099543942088371588117575318, −3.18616859703353666726230207951, −1.76186345992483143026681131053,
1.37603737750243930769747092059, 2.90985402050510826591347431082, 4.14250299671800697735016151326, 4.81894784126759169057010764486, 5.84951530656746419733850756187, 6.96323507245106491752274989910, 8.281647319434559105955702628398, 9.165286582003996790526038314712, 9.613614043774327106423212575343, 11.07696633691376025357402243802