L(s) = 1 | + (0.866 + 0.5i)2-s + (0.5 − 0.866i)3-s + (0.499 + 0.866i)4-s − 3.05i·5-s + (0.866 − 0.499i)6-s + (0.866 − 0.5i)7-s + 0.999i·8-s + (−0.499 − 0.866i)9-s + (1.52 − 2.64i)10-s + (−2.98 − 1.72i)11-s + 0.999·12-s + (3.25 + 1.55i)13-s + 0.999·14-s + (−2.64 − 1.52i)15-s + (−0.5 + 0.866i)16-s + (−1.41 − 2.44i)17-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.288 − 0.499i)3-s + (0.249 + 0.433i)4-s − 1.36i·5-s + (0.353 − 0.204i)6-s + (0.327 − 0.188i)7-s + 0.353i·8-s + (−0.166 − 0.288i)9-s + (0.483 − 0.836i)10-s + (−0.898 − 0.518i)11-s + 0.288·12-s + (0.902 + 0.431i)13-s + 0.267·14-s + (−0.683 − 0.394i)15-s + (−0.125 + 0.216i)16-s + (−0.343 − 0.594i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.575 + 0.817i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.575 + 0.817i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.95825 - 1.01573i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.95825 - 1.01573i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 13 | \( 1 + (-3.25 - 1.55i)T \) |
good | 5 | \( 1 + 3.05iT - 5T^{2} \) |
| 11 | \( 1 + (2.98 + 1.72i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (1.41 + 2.44i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.49 + 0.862i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.53 + 2.65i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.92 - 3.33i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 0.978iT - 31T^{2} \) |
| 37 | \( 1 + (-4.58 - 2.64i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-8.62 - 4.98i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.51 + 2.61i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 8.04iT - 47T^{2} \) |
| 53 | \( 1 + 8.33T + 53T^{2} \) |
| 59 | \( 1 + (-8.64 + 4.98i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.77 - 9.99i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.11 - 2.37i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (3.17 - 1.83i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 10.1iT - 73T^{2} \) |
| 79 | \( 1 + 4.49T + 79T^{2} \) |
| 83 | \( 1 - 7.15iT - 83T^{2} \) |
| 89 | \( 1 + (6.84 + 3.95i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (7.88 - 4.54i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.01241482286716819407308027184, −9.502790436806801175032102866839, −8.606839642397001830075488635440, −8.086954467108983644981362737650, −7.06573337410252472382046795962, −5.92160382064144849344900282171, −5.04892507829891282149478440926, −4.16483731699570470533197513691, −2.73310824370063157662183896347, −1.11541997439468983081592657501,
2.15183689530463916303899119836, 3.13249927276825195201384804925, 4.03818256803755228264191672854, 5.31198564109933182563469889970, 6.18486553817925258198178790297, 7.31572537034515420682385259354, 8.167924664204393500307798341725, 9.459399000979135741369637108894, 10.36055270479569596047627452523, 10.89294340653573189869796428081