L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s − 3.56·5-s + (−0.499 + 0.866i)6-s + (0.5 − 0.866i)7-s + 0.999·8-s + (−0.499 + 0.866i)9-s + (1.78 + 3.08i)10-s + (−1.28 − 2.21i)11-s + 0.999·12-s + (−0.5 + 3.57i)13-s − 0.999·14-s + (1.78 + 3.08i)15-s + (−0.5 − 0.866i)16-s + (2.5 − 4.33i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.288 − 0.499i)3-s + (−0.249 + 0.433i)4-s − 1.59·5-s + (−0.204 + 0.353i)6-s + (0.188 − 0.327i)7-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (0.563 + 0.975i)10-s + (−0.386 − 0.668i)11-s + 0.288·12-s + (−0.138 + 0.990i)13-s − 0.267·14-s + (0.459 + 0.796i)15-s + (−0.125 − 0.216i)16-s + (0.606 − 1.05i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.794 - 0.607i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.794 - 0.607i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.428275 + 0.144947i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.428275 + 0.144947i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (0.5 - 3.57i)T \) |
good | 5 | \( 1 + 3.56T + 5T^{2} \) |
| 11 | \( 1 + (1.28 + 2.21i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.5 + 4.33i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.84 - 6.65i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.56 - 7.90i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 5.12T + 31T^{2} \) |
| 37 | \( 1 + (-4.90 - 8.49i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.06 + 3.57i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.43 + 2.49i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 7.68T + 47T^{2} \) |
| 53 | \( 1 + 3.87T + 53T^{2} \) |
| 59 | \( 1 + (6.56 - 11.3i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.561 + 0.972i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-2 + 3.46i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 2.43T + 73T^{2} \) |
| 79 | \( 1 - 1.43T + 79T^{2} \) |
| 83 | \( 1 + 10.2T + 83T^{2} \) |
| 89 | \( 1 + (-4.84 - 8.38i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (6.12 - 10.6i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.15673592121477558475301328700, −10.22402275174936494403593107152, −9.057893418106304410325546294972, −7.999741098589306161321626467936, −7.66105301476937064089661115836, −6.60013991705357099876328372533, −5.08134273399618757730208809428, −4.00787513167301698174705292594, −3.05429821191537438574459869072, −1.23128666803714783207566773468,
0.35327922923447364433279661753, 2.91628802504928215060906728393, 4.36404261140080671322979389177, 4.88948270922628189036482240660, 6.23718076521617461231642562774, 7.23336688417032258737000325406, 8.152169742345082598544790999765, 8.606913685448065839120454845725, 9.849873184753851268962566376937, 10.79584529436428909261531621424