Properties

Label 2-546-13.12-c1-0-4
Degree $2$
Conductor $546$
Sign $0.832 + 0.554i$
Analytic cond. $4.35983$
Root an. cond. $2.08802$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 3-s − 4-s + i·5-s + i·6-s i·7-s + i·8-s + 9-s + 10-s + i·11-s + 12-s + (3 + 2i)13-s − 14-s i·15-s + 16-s + 17-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.577·3-s − 0.5·4-s + 0.447i·5-s + 0.408i·6-s − 0.377i·7-s + 0.353i·8-s + 0.333·9-s + 0.316·10-s + 0.301i·11-s + 0.288·12-s + (0.832 + 0.554i)13-s − 0.267·14-s − 0.258i·15-s + 0.250·16-s + 0.242·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 + 0.554i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.832 + 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(546\)    =    \(2 \cdot 3 \cdot 7 \cdot 13\)
Sign: $0.832 + 0.554i$
Analytic conductor: \(4.35983\)
Root analytic conductor: \(2.08802\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{546} (337, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 546,\ (\ :1/2),\ 0.832 + 0.554i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.13638 - 0.344069i\)
\(L(\frac12)\) \(\approx\) \(1.13638 - 0.344069i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 + T \)
7 \( 1 + iT \)
13 \( 1 + (-3 - 2i)T \)
good5 \( 1 - iT - 5T^{2} \)
11 \( 1 - iT - 11T^{2} \)
17 \( 1 - T + 17T^{2} \)
19 \( 1 + iT - 19T^{2} \)
23 \( 1 - 3T + 23T^{2} \)
29 \( 1 - 9T + 29T^{2} \)
31 \( 1 + 4iT - 31T^{2} \)
37 \( 1 + 9iT - 37T^{2} \)
41 \( 1 - 8iT - 41T^{2} \)
43 \( 1 - 7T + 43T^{2} \)
47 \( 1 - 8iT - 47T^{2} \)
53 \( 1 + 10T + 53T^{2} \)
59 \( 1 + 6iT - 59T^{2} \)
61 \( 1 - 11T + 61T^{2} \)
67 \( 1 + 12iT - 67T^{2} \)
71 \( 1 - 6iT - 71T^{2} \)
73 \( 1 - 11iT - 73T^{2} \)
79 \( 1 + 12T + 79T^{2} \)
83 \( 1 - 6iT - 83T^{2} \)
89 \( 1 - 12iT - 89T^{2} \)
97 \( 1 + 2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.04505362659265251242170856084, −10.02004710064398676615273167938, −9.219480901588857273058422341604, −8.109639533376156155836635696537, −6.98106462795789150955807148679, −6.16423625528239770109262574331, −4.89211644729518278801671489593, −3.98271519982292327097434245597, −2.72104849752177574724365641659, −1.11881376874371552172747247000, 1.03407213013071041944117832355, 3.18728483142858966879703378545, 4.58595412521107281643708288977, 5.42033514195581625818776081159, 6.23283583615769451213451930779, 7.13626991888380856938724060512, 8.383785026984063472299012064678, 8.783531309560911449799472382690, 10.03956400679909049827172074353, 10.78104301170401505307511686094

Graph of the $Z$-function along the critical line