Properties

Label 2-546-1.1-c7-0-72
Degree $2$
Conductor $546$
Sign $-1$
Analytic cond. $170.562$
Root an. cond. $13.0599$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 27·3-s + 64·4-s + 249.·5-s − 216·6-s − 343·7-s − 512·8-s + 729·9-s − 1.99e3·10-s + 3.23e3·11-s + 1.72e3·12-s − 2.19e3·13-s + 2.74e3·14-s + 6.74e3·15-s + 4.09e3·16-s + 9.01e3·17-s − 5.83e3·18-s − 3.59e4·19-s + 1.59e4·20-s − 9.26e3·21-s − 2.58e4·22-s − 3.85e4·23-s − 1.38e4·24-s − 1.57e4·25-s + 1.75e4·26-s + 1.96e4·27-s − 2.19e4·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.893·5-s − 0.408·6-s − 0.377·7-s − 0.353·8-s + 0.333·9-s − 0.631·10-s + 0.732·11-s + 0.288·12-s − 0.277·13-s + 0.267·14-s + 0.515·15-s + 0.250·16-s + 0.445·17-s − 0.235·18-s − 1.20·19-s + 0.446·20-s − 0.218·21-s − 0.518·22-s − 0.660·23-s − 0.204·24-s − 0.201·25-s + 0.196·26-s + 0.192·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(546\)    =    \(2 \cdot 3 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(170.562\)
Root analytic conductor: \(13.0599\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{546} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 546,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
3 \( 1 - 27T \)
7 \( 1 + 343T \)
13 \( 1 + 2.19e3T \)
good5 \( 1 - 249.T + 7.81e4T^{2} \)
11 \( 1 - 3.23e3T + 1.94e7T^{2} \)
17 \( 1 - 9.01e3T + 4.10e8T^{2} \)
19 \( 1 + 3.59e4T + 8.93e8T^{2} \)
23 \( 1 + 3.85e4T + 3.40e9T^{2} \)
29 \( 1 - 6.82e4T + 1.72e10T^{2} \)
31 \( 1 - 1.18e5T + 2.75e10T^{2} \)
37 \( 1 + 5.90e5T + 9.49e10T^{2} \)
41 \( 1 - 4.14e5T + 1.94e11T^{2} \)
43 \( 1 - 4.76e4T + 2.71e11T^{2} \)
47 \( 1 + 3.47e5T + 5.06e11T^{2} \)
53 \( 1 + 5.47e5T + 1.17e12T^{2} \)
59 \( 1 - 9.95e5T + 2.48e12T^{2} \)
61 \( 1 + 2.70e6T + 3.14e12T^{2} \)
67 \( 1 + 3.28e6T + 6.06e12T^{2} \)
71 \( 1 + 5.43e6T + 9.09e12T^{2} \)
73 \( 1 + 6.18e5T + 1.10e13T^{2} \)
79 \( 1 + 6.29e6T + 1.92e13T^{2} \)
83 \( 1 - 5.10e6T + 2.71e13T^{2} \)
89 \( 1 - 6.51e6T + 4.42e13T^{2} \)
97 \( 1 - 9.09e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.192611173975166106692877903888, −8.575488561850666724809719233181, −7.54562017504877191002345878733, −6.54676206690291277857802712251, −5.88600871494437778761212580461, −4.43158571313601375786435018892, −3.22300990112053549127397640790, −2.17127467832396411448717150965, −1.38695666295489681030520147433, 0, 1.38695666295489681030520147433, 2.17127467832396411448717150965, 3.22300990112053549127397640790, 4.43158571313601375786435018892, 5.88600871494437778761212580461, 6.54676206690291277857802712251, 7.54562017504877191002345878733, 8.575488561850666724809719233181, 9.192611173975166106692877903888

Graph of the $Z$-function along the critical line