Properties

Label 2-546-1.1-c7-0-5
Degree $2$
Conductor $546$
Sign $1$
Analytic cond. $170.562$
Root an. cond. $13.0599$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s − 27·3-s + 64·4-s − 307.·5-s − 216·6-s + 343·7-s + 512·8-s + 729·9-s − 2.45e3·10-s − 7.42e3·11-s − 1.72e3·12-s − 2.19e3·13-s + 2.74e3·14-s + 8.29e3·15-s + 4.09e3·16-s − 5.21e3·17-s + 5.83e3·18-s − 610.·19-s − 1.96e4·20-s − 9.26e3·21-s − 5.93e4·22-s − 5.37e4·23-s − 1.38e4·24-s + 1.62e4·25-s − 1.75e4·26-s − 1.96e4·27-s + 2.19e4·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s − 1.09·5-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 0.333·9-s − 0.777·10-s − 1.68·11-s − 0.288·12-s − 0.277·13-s + 0.267·14-s + 0.634·15-s + 0.250·16-s − 0.257·17-s + 0.235·18-s − 0.0204·19-s − 0.549·20-s − 0.218·21-s − 1.18·22-s − 0.920·23-s − 0.204·24-s + 0.207·25-s − 0.196·26-s − 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(546\)    =    \(2 \cdot 3 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(170.562\)
Root analytic conductor: \(13.0599\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{546} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 546,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.059846550\)
\(L(\frac12)\) \(\approx\) \(1.059846550\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8T \)
3 \( 1 + 27T \)
7 \( 1 - 343T \)
13 \( 1 + 2.19e3T \)
good5 \( 1 + 307.T + 7.81e4T^{2} \)
11 \( 1 + 7.42e3T + 1.94e7T^{2} \)
17 \( 1 + 5.21e3T + 4.10e8T^{2} \)
19 \( 1 + 610.T + 8.93e8T^{2} \)
23 \( 1 + 5.37e4T + 3.40e9T^{2} \)
29 \( 1 - 5.54e4T + 1.72e10T^{2} \)
31 \( 1 + 1.36e4T + 2.75e10T^{2} \)
37 \( 1 + 1.43e5T + 9.49e10T^{2} \)
41 \( 1 + 3.03e5T + 1.94e11T^{2} \)
43 \( 1 + 6.84e4T + 2.71e11T^{2} \)
47 \( 1 + 9.27e5T + 5.06e11T^{2} \)
53 \( 1 - 1.71e6T + 1.17e12T^{2} \)
59 \( 1 + 3.16e5T + 2.48e12T^{2} \)
61 \( 1 - 1.21e6T + 3.14e12T^{2} \)
67 \( 1 + 2.28e6T + 6.06e12T^{2} \)
71 \( 1 + 2.74e6T + 9.09e12T^{2} \)
73 \( 1 + 3.47e6T + 1.10e13T^{2} \)
79 \( 1 - 4.82e6T + 1.92e13T^{2} \)
83 \( 1 + 2.84e6T + 2.71e13T^{2} \)
89 \( 1 + 4.19e5T + 4.42e13T^{2} \)
97 \( 1 + 5.79e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.07524407264471751223399208933, −8.432929161817384002756926376178, −7.75696541943460921577405065041, −7.00290512643810163575246176709, −5.78719601609356941786053732132, −4.97084463779556042520767226837, −4.22653887804723747733963001340, −3.11912767045798532668076529501, −1.96464194231332228145152216484, −0.39104131176921821859353698190, 0.39104131176921821859353698190, 1.96464194231332228145152216484, 3.11912767045798532668076529501, 4.22653887804723747733963001340, 4.97084463779556042520767226837, 5.78719601609356941786053732132, 7.00290512643810163575246176709, 7.75696541943460921577405065041, 8.432929161817384002756926376178, 10.07524407264471751223399208933

Graph of the $Z$-function along the critical line