Properties

Label 2-546-1.1-c7-0-48
Degree $2$
Conductor $546$
Sign $-1$
Analytic cond. $170.562$
Root an. cond. $13.0599$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 27·3-s + 64·4-s − 428.·5-s − 216·6-s + 343·7-s − 512·8-s + 729·9-s + 3.43e3·10-s − 5.64e3·11-s + 1.72e3·12-s + 2.19e3·13-s − 2.74e3·14-s − 1.15e4·15-s + 4.09e3·16-s + 5.03e3·17-s − 5.83e3·18-s − 7.39e3·19-s − 2.74e4·20-s + 9.26e3·21-s + 4.51e4·22-s + 7.29e4·23-s − 1.38e4·24-s + 1.05e5·25-s − 1.75e4·26-s + 1.96e4·27-s + 2.19e4·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 0.5·4-s − 1.53·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 0.333·9-s + 1.08·10-s − 1.27·11-s + 0.288·12-s + 0.277·13-s − 0.267·14-s − 0.885·15-s + 0.250·16-s + 0.248·17-s − 0.235·18-s − 0.247·19-s − 0.767·20-s + 0.218·21-s + 0.903·22-s + 1.24·23-s − 0.204·24-s + 1.35·25-s − 0.196·26-s + 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(546\)    =    \(2 \cdot 3 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(170.562\)
Root analytic conductor: \(13.0599\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{546} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 546,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
3 \( 1 - 27T \)
7 \( 1 - 343T \)
13 \( 1 - 2.19e3T \)
good5 \( 1 + 428.T + 7.81e4T^{2} \)
11 \( 1 + 5.64e3T + 1.94e7T^{2} \)
17 \( 1 - 5.03e3T + 4.10e8T^{2} \)
19 \( 1 + 7.39e3T + 8.93e8T^{2} \)
23 \( 1 - 7.29e4T + 3.40e9T^{2} \)
29 \( 1 + 5.93e4T + 1.72e10T^{2} \)
31 \( 1 + 1.13e5T + 2.75e10T^{2} \)
37 \( 1 - 1.12e5T + 9.49e10T^{2} \)
41 \( 1 - 2.24e5T + 1.94e11T^{2} \)
43 \( 1 - 5.09e5T + 2.71e11T^{2} \)
47 \( 1 + 4.54e5T + 5.06e11T^{2} \)
53 \( 1 - 8.69e5T + 1.17e12T^{2} \)
59 \( 1 - 1.63e6T + 2.48e12T^{2} \)
61 \( 1 - 2.14e6T + 3.14e12T^{2} \)
67 \( 1 - 5.50e4T + 6.06e12T^{2} \)
71 \( 1 + 4.22e6T + 9.09e12T^{2} \)
73 \( 1 - 1.72e6T + 1.10e13T^{2} \)
79 \( 1 + 3.59e6T + 1.92e13T^{2} \)
83 \( 1 + 8.13e6T + 2.71e13T^{2} \)
89 \( 1 + 4.86e6T + 4.42e13T^{2} \)
97 \( 1 - 6.88e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.932907723882524769393355057390, −8.307248415422937120813407803981, −7.60246761340492399093445909691, −7.08845864999447830513979145321, −5.49827375629335565081276702781, −4.35220980689704605313968489856, −3.35520150845133289606417547551, −2.42065464823011514864294167212, −1.00538008438317754033556133975, 0, 1.00538008438317754033556133975, 2.42065464823011514864294167212, 3.35520150845133289606417547551, 4.35220980689704605313968489856, 5.49827375629335565081276702781, 7.08845864999447830513979145321, 7.60246761340492399093445909691, 8.307248415422937120813407803981, 8.932907723882524769393355057390

Graph of the $Z$-function along the critical line