Properties

Label 2-546-1.1-c7-0-11
Degree $2$
Conductor $546$
Sign $1$
Analytic cond. $170.562$
Root an. cond. $13.0599$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s − 27·3-s + 64·4-s + 163.·5-s + 216·6-s + 343·7-s − 512·8-s + 729·9-s − 1.30e3·10-s − 5.27e3·11-s − 1.72e3·12-s + 2.19e3·13-s − 2.74e3·14-s − 4.41e3·15-s + 4.09e3·16-s − 2.24e4·17-s − 5.83e3·18-s + 5.23e4·19-s + 1.04e4·20-s − 9.26e3·21-s + 4.21e4·22-s − 4.90e4·23-s + 1.38e4·24-s − 5.13e4·25-s − 1.75e4·26-s − 1.96e4·27-s + 2.19e4·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.585·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s + 0.333·9-s − 0.414·10-s − 1.19·11-s − 0.288·12-s + 0.277·13-s − 0.267·14-s − 0.338·15-s + 0.250·16-s − 1.10·17-s − 0.235·18-s + 1.75·19-s + 0.292·20-s − 0.218·21-s + 0.844·22-s − 0.841·23-s + 0.204·24-s − 0.657·25-s − 0.196·26-s − 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(546\)    =    \(2 \cdot 3 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(170.562\)
Root analytic conductor: \(13.0599\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{546} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 546,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.042361653\)
\(L(\frac12)\) \(\approx\) \(1.042361653\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
3 \( 1 + 27T \)
7 \( 1 - 343T \)
13 \( 1 - 2.19e3T \)
good5 \( 1 - 163.T + 7.81e4T^{2} \)
11 \( 1 + 5.27e3T + 1.94e7T^{2} \)
17 \( 1 + 2.24e4T + 4.10e8T^{2} \)
19 \( 1 - 5.23e4T + 8.93e8T^{2} \)
23 \( 1 + 4.90e4T + 3.40e9T^{2} \)
29 \( 1 + 2.51e5T + 1.72e10T^{2} \)
31 \( 1 + 6.14e4T + 2.75e10T^{2} \)
37 \( 1 - 4.55e5T + 9.49e10T^{2} \)
41 \( 1 + 3.98e5T + 1.94e11T^{2} \)
43 \( 1 - 5.66e5T + 2.71e11T^{2} \)
47 \( 1 - 6.95e5T + 5.06e11T^{2} \)
53 \( 1 - 2.12e6T + 1.17e12T^{2} \)
59 \( 1 - 2.37e5T + 2.48e12T^{2} \)
61 \( 1 - 1.97e6T + 3.14e12T^{2} \)
67 \( 1 + 2.27e6T + 6.06e12T^{2} \)
71 \( 1 + 4.73e6T + 9.09e12T^{2} \)
73 \( 1 - 1.71e5T + 1.10e13T^{2} \)
79 \( 1 + 4.20e6T + 1.92e13T^{2} \)
83 \( 1 + 5.78e6T + 2.71e13T^{2} \)
89 \( 1 - 3.98e6T + 4.42e13T^{2} \)
97 \( 1 + 1.21e5T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.737623953745343899862919854583, −8.918867965596490700612563745941, −7.76324643059059460597975494265, −7.21153205117561670838693903450, −5.83315614262216263565970636973, −5.46238172689931444677481082495, −4.07238953546663807016145131618, −2.57472850056236284882665785411, −1.68913868689695143008298927731, −0.50266973182986301857552390872, 0.50266973182986301857552390872, 1.68913868689695143008298927731, 2.57472850056236284882665785411, 4.07238953546663807016145131618, 5.46238172689931444677481082495, 5.83315614262216263565970636973, 7.21153205117561670838693903450, 7.76324643059059460597975494265, 8.918867965596490700612563745941, 9.737623953745343899862919854583

Graph of the $Z$-function along the critical line