Properties

Label 2-546-1.1-c1-0-1
Degree $2$
Conductor $546$
Sign $1$
Analytic cond. $4.35983$
Root an. cond. $2.08802$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s − 7-s − 8-s + 9-s + 10-s − 11-s − 12-s + 13-s + 14-s + 15-s + 16-s − 17-s − 18-s + 7·19-s − 20-s + 21-s + 22-s + 3·23-s + 24-s − 4·25-s − 26-s − 27-s − 28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.301·11-s − 0.288·12-s + 0.277·13-s + 0.267·14-s + 0.258·15-s + 1/4·16-s − 0.242·17-s − 0.235·18-s + 1.60·19-s − 0.223·20-s + 0.218·21-s + 0.213·22-s + 0.625·23-s + 0.204·24-s − 4/5·25-s − 0.196·26-s − 0.192·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(546\)    =    \(2 \cdot 3 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(4.35983\)
Root analytic conductor: \(2.08802\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{546} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 546,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7389168563\)
\(L(\frac12)\) \(\approx\) \(0.7389168563\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 - T \)
good5 \( 1 + T + p T^{2} \)
11 \( 1 + T + p T^{2} \)
17 \( 1 + T + p T^{2} \)
19 \( 1 - 7 T + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
41 \( 1 - 8 T + p T^{2} \)
43 \( 1 - 7 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 7 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 - 4 T + p T^{2} \)
73 \( 1 + T + p T^{2} \)
79 \( 1 - 2 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 - 14 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.87828767142563850984203299403, −9.830482152383865075162607187231, −9.238901151937369971060801350019, −7.989533322867788266699146560748, −7.36704201474949306661883808997, −6.31765724862059418112807608149, −5.40313917886070508173370776569, −4.06697693387504014280366005936, −2.73969647109463404655309319884, −0.888061619657031568443844641518, 0.888061619657031568443844641518, 2.73969647109463404655309319884, 4.06697693387504014280366005936, 5.40313917886070508173370776569, 6.31765724862059418112807608149, 7.36704201474949306661883808997, 7.989533322867788266699146560748, 9.238901151937369971060801350019, 9.830482152383865075162607187231, 10.87828767142563850984203299403

Graph of the $Z$-function along the critical line