Properties

Label 2-5415-1.1-c1-0-86
Degree $2$
Conductor $5415$
Sign $1$
Analytic cond. $43.2389$
Root an. cond. $6.57563$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.290·2-s + 3-s − 1.91·4-s + 5-s + 0.290·6-s − 0.486·7-s − 1.13·8-s + 9-s + 0.290·10-s + 5.34·11-s − 1.91·12-s + 2.48·13-s − 0.141·14-s + 15-s + 3.50·16-s − 3.41·17-s + 0.290·18-s − 1.91·20-s − 0.486·21-s + 1.55·22-s + 6.41·23-s − 1.13·24-s + 25-s + 0.722·26-s + 27-s + 0.932·28-s − 2.76·29-s + ⋯
L(s)  = 1  + 0.205·2-s + 0.577·3-s − 0.957·4-s + 0.447·5-s + 0.118·6-s − 0.183·7-s − 0.402·8-s + 0.333·9-s + 0.0919·10-s + 1.61·11-s − 0.552·12-s + 0.689·13-s − 0.0378·14-s + 0.258·15-s + 0.875·16-s − 0.828·17-s + 0.0685·18-s − 0.428·20-s − 0.106·21-s + 0.331·22-s + 1.33·23-s − 0.232·24-s + 0.200·25-s + 0.141·26-s + 0.192·27-s + 0.176·28-s − 0.513·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5415 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5415 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5415\)    =    \(3 \cdot 5 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(43.2389\)
Root analytic conductor: \(6.57563\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5415,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.657276388\)
\(L(\frac12)\) \(\approx\) \(2.657276388\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 - T \)
19 \( 1 \)
good2 \( 1 - 0.290T + 2T^{2} \)
7 \( 1 + 0.486T + 7T^{2} \)
11 \( 1 - 5.34T + 11T^{2} \)
13 \( 1 - 2.48T + 13T^{2} \)
17 \( 1 + 3.41T + 17T^{2} \)
23 \( 1 - 6.41T + 23T^{2} \)
29 \( 1 + 2.76T + 29T^{2} \)
31 \( 1 + 4.83T + 31T^{2} \)
37 \( 1 - 6.31T + 37T^{2} \)
41 \( 1 + 2.58T + 41T^{2} \)
43 \( 1 + 2.48T + 43T^{2} \)
47 \( 1 - 11.1T + 47T^{2} \)
53 \( 1 + 2.99T + 53T^{2} \)
59 \( 1 + 12.7T + 59T^{2} \)
61 \( 1 - 11.8T + 61T^{2} \)
67 \( 1 - 15.1T + 67T^{2} \)
71 \( 1 - 9.92T + 71T^{2} \)
73 \( 1 + 11.0T + 73T^{2} \)
79 \( 1 + 8.13T + 79T^{2} \)
83 \( 1 + 5.86T + 83T^{2} \)
89 \( 1 - 6.51T + 89T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.528787460004892007838794396527, −7.43954882266416155270524430341, −6.66312812110099162460583336118, −6.06521841688150259079659945990, −5.18343317752888293396534787999, −4.33571019733651494623673640432, −3.77030742875690921237359535823, −3.04625630065028179613573610342, −1.81964552155927779464209960618, −0.882199977243032778929710025783, 0.882199977243032778929710025783, 1.81964552155927779464209960618, 3.04625630065028179613573610342, 3.77030742875690921237359535823, 4.33571019733651494623673640432, 5.18343317752888293396534787999, 6.06521841688150259079659945990, 6.66312812110099162460583336118, 7.43954882266416155270524430341, 8.528787460004892007838794396527

Graph of the $Z$-function along the critical line