L(s) = 1 | + 2·2-s + 3-s + 2·4-s − 5-s + 2·6-s − 2·7-s + 9-s − 2·10-s + 11-s + 2·12-s − 2·13-s − 4·14-s − 15-s − 4·16-s + 2·17-s + 2·18-s − 2·20-s − 2·21-s + 2·22-s − 4·23-s + 25-s − 4·26-s + 27-s − 4·28-s + 5·29-s − 2·30-s − 9·31-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 0.577·3-s + 4-s − 0.447·5-s + 0.816·6-s − 0.755·7-s + 1/3·9-s − 0.632·10-s + 0.301·11-s + 0.577·12-s − 0.554·13-s − 1.06·14-s − 0.258·15-s − 16-s + 0.485·17-s + 0.471·18-s − 0.447·20-s − 0.436·21-s + 0.426·22-s − 0.834·23-s + 1/5·25-s − 0.784·26-s + 0.192·27-s − 0.755·28-s + 0.928·29-s − 0.365·30-s − 1.61·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5415 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5415 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 5 | \( 1 + T \) |
| 19 | \( 1 \) |
good | 2 | \( 1 - p T + p T^{2} \) |
| 7 | \( 1 + 2 T + p T^{2} \) |
| 11 | \( 1 - T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 - 2 T + p T^{2} \) |
| 23 | \( 1 + 4 T + p T^{2} \) |
| 29 | \( 1 - 5 T + p T^{2} \) |
| 31 | \( 1 + 9 T + p T^{2} \) |
| 37 | \( 1 - 6 T + p T^{2} \) |
| 41 | \( 1 + 6 T + p T^{2} \) |
| 43 | \( 1 + 10 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 - 2 T + p T^{2} \) |
| 59 | \( 1 + 7 T + p T^{2} \) |
| 61 | \( 1 + 7 T + p T^{2} \) |
| 67 | \( 1 + 8 T + p T^{2} \) |
| 71 | \( 1 + 3 T + p T^{2} \) |
| 73 | \( 1 + 2 T + p T^{2} \) |
| 79 | \( 1 - 11 T + p T^{2} \) |
| 83 | \( 1 - 6 T + p T^{2} \) |
| 89 | \( 1 + 15 T + p T^{2} \) |
| 97 | \( 1 + 8 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.66885888024519414537655179127, −6.89526086445380421893122050516, −6.32960881346098965129740540985, −5.52684273176016658413762226789, −4.72776209627265684215077057097, −4.04789493352893665557490590192, −3.34607192986271256737088880685, −2.85982909504474496796886027827, −1.76209592180055655198825821125, 0,
1.76209592180055655198825821125, 2.85982909504474496796886027827, 3.34607192986271256737088880685, 4.04789493352893665557490590192, 4.72776209627265684215077057097, 5.52684273176016658413762226789, 6.32960881346098965129740540985, 6.89526086445380421893122050516, 7.66885888024519414537655179127