Properties

Label 2-5408-1.1-c1-0-47
Degree $2$
Conductor $5408$
Sign $1$
Analytic cond. $43.1830$
Root an. cond. $6.57138$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.414·3-s + 2.82·5-s + 1.58·7-s − 2.82·9-s − 5.24·11-s − 1.17·15-s − 0.171·17-s + 7.24·19-s − 0.656·21-s + 7.24·23-s + 3.00·25-s + 2.41·27-s − 2.65·29-s − 5.65·31-s + 2.17·33-s + 4.48·35-s − 9.48·37-s + 0.171·41-s + 10.0·43-s − 8.00·45-s + 6·47-s − 4.48·49-s + 0.0710·51-s + 2.82·53-s − 14.8·55-s − 2.99·57-s + 7.24·59-s + ⋯
L(s)  = 1  − 0.239·3-s + 1.26·5-s + 0.599·7-s − 0.942·9-s − 1.58·11-s − 0.302·15-s − 0.0416·17-s + 1.66·19-s − 0.143·21-s + 1.51·23-s + 0.600·25-s + 0.464·27-s − 0.493·29-s − 1.01·31-s + 0.378·33-s + 0.758·35-s − 1.55·37-s + 0.0267·41-s + 1.53·43-s − 1.19·45-s + 0.875·47-s − 0.640·49-s + 0.00995·51-s + 0.388·53-s − 1.99·55-s − 0.397·57-s + 0.942·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5408\)    =    \(2^{5} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(43.1830\)
Root analytic conductor: \(6.57138\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5408,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.135126403\)
\(L(\frac12)\) \(\approx\) \(2.135126403\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 + 0.414T + 3T^{2} \)
5 \( 1 - 2.82T + 5T^{2} \)
7 \( 1 - 1.58T + 7T^{2} \)
11 \( 1 + 5.24T + 11T^{2} \)
17 \( 1 + 0.171T + 17T^{2} \)
19 \( 1 - 7.24T + 19T^{2} \)
23 \( 1 - 7.24T + 23T^{2} \)
29 \( 1 + 2.65T + 29T^{2} \)
31 \( 1 + 5.65T + 31T^{2} \)
37 \( 1 + 9.48T + 37T^{2} \)
41 \( 1 - 0.171T + 41T^{2} \)
43 \( 1 - 10.0T + 43T^{2} \)
47 \( 1 - 6T + 47T^{2} \)
53 \( 1 - 2.82T + 53T^{2} \)
59 \( 1 - 7.24T + 59T^{2} \)
61 \( 1 - 7T + 61T^{2} \)
67 \( 1 - 4.75T + 67T^{2} \)
71 \( 1 - 1.24T + 71T^{2} \)
73 \( 1 - 4.48T + 73T^{2} \)
79 \( 1 - 6T + 79T^{2} \)
83 \( 1 - 4T + 83T^{2} \)
89 \( 1 - 14.6T + 89T^{2} \)
97 \( 1 - 9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.114993285590380313870147274227, −7.48768716252550825910324545140, −6.74815102104003767634057697284, −5.60232411800284578314719073859, −5.41867426713687951873961939835, −4.99160731173212377682020100826, −3.49568209900732479762338730748, −2.68208283939971958074764602206, −2.00228685098563934553756299625, −0.789429202330035618389570570369, 0.789429202330035618389570570369, 2.00228685098563934553756299625, 2.68208283939971958074764602206, 3.49568209900732479762338730748, 4.99160731173212377682020100826, 5.41867426713687951873961939835, 5.60232411800284578314719073859, 6.74815102104003767634057697284, 7.48768716252550825910324545140, 8.114993285590380313870147274227

Graph of the $Z$-function along the critical line