Properties

Label 2-5408-1.1-c1-0-21
Degree $2$
Conductor $5408$
Sign $1$
Analytic cond. $43.1830$
Root an. cond. $6.57138$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 3·7-s − 2·9-s − 2·11-s − 15-s − 3·17-s − 2·19-s − 3·21-s + 4·23-s − 4·25-s − 5·27-s + 2·29-s − 4·31-s − 2·33-s + 3·35-s − 5·37-s + 12·41-s + 7·43-s + 2·45-s + 9·47-s + 2·49-s − 3·51-s + 4·53-s + 2·55-s − 2·57-s − 6·59-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 1.13·7-s − 2/3·9-s − 0.603·11-s − 0.258·15-s − 0.727·17-s − 0.458·19-s − 0.654·21-s + 0.834·23-s − 4/5·25-s − 0.962·27-s + 0.371·29-s − 0.718·31-s − 0.348·33-s + 0.507·35-s − 0.821·37-s + 1.87·41-s + 1.06·43-s + 0.298·45-s + 1.31·47-s + 2/7·49-s − 0.420·51-s + 0.549·53-s + 0.269·55-s − 0.264·57-s − 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5408\)    =    \(2^{5} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(43.1830\)
Root analytic conductor: \(6.57138\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5408,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.057888433\)
\(L(\frac12)\) \(\approx\) \(1.057888433\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 - T + p T^{2} \)
5 \( 1 + T + p T^{2} \)
7 \( 1 + 3 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 5 T + p T^{2} \)
41 \( 1 - 12 T + p T^{2} \)
43 \( 1 - 7 T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 - 4 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 - 10 T + p T^{2} \)
71 \( 1 - 15 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.155475919227474927845697076584, −7.53790637677321817500988270720, −6.82225463998717423647601419811, −6.02768784847994320314313833225, −5.38702250040064766465923905587, −4.27972725773597363535034100520, −3.61924269731192216193712406886, −2.81310616067439690500847810982, −2.22011891993564117903631356829, −0.50089057585371175170833868276, 0.50089057585371175170833868276, 2.22011891993564117903631356829, 2.81310616067439690500847810982, 3.61924269731192216193712406886, 4.27972725773597363535034100520, 5.38702250040064766465923905587, 6.02768784847994320314313833225, 6.82225463998717423647601419811, 7.53790637677321817500988270720, 8.155475919227474927845697076584

Graph of the $Z$-function along the critical line