Properties

Label 2-5408-1.1-c1-0-139
Degree $2$
Conductor $5408$
Sign $-1$
Analytic cond. $43.1830$
Root an. cond. $6.57138$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 3·5-s + 7-s + 6·9-s − 4·11-s − 9·15-s + 5·17-s − 6·19-s + 3·21-s − 6·23-s + 4·25-s + 9·27-s − 4·29-s − 12·33-s − 3·35-s − 3·37-s + 12·41-s − 3·43-s − 18·45-s − 7·47-s − 6·49-s + 15·51-s − 2·53-s + 12·55-s − 18·57-s + 2·59-s − 12·61-s + ⋯
L(s)  = 1  + 1.73·3-s − 1.34·5-s + 0.377·7-s + 2·9-s − 1.20·11-s − 2.32·15-s + 1.21·17-s − 1.37·19-s + 0.654·21-s − 1.25·23-s + 4/5·25-s + 1.73·27-s − 0.742·29-s − 2.08·33-s − 0.507·35-s − 0.493·37-s + 1.87·41-s − 0.457·43-s − 2.68·45-s − 1.02·47-s − 6/7·49-s + 2.10·51-s − 0.274·53-s + 1.61·55-s − 2.38·57-s + 0.260·59-s − 1.53·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5408\)    =    \(2^{5} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(43.1830\)
Root analytic conductor: \(6.57138\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5408,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 - p T + p T^{2} \)
5 \( 1 + 3 T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
17 \( 1 - 5 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 + 4 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 3 T + p T^{2} \)
41 \( 1 - 12 T + p T^{2} \)
43 \( 1 + 3 T + p T^{2} \)
47 \( 1 + 7 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 - 2 T + p T^{2} \)
61 \( 1 + 12 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 11 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 6 T + p T^{2} \)
83 \( 1 + 10 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.925951474418443176738486971457, −7.68198838538682480497091541735, −6.67881212838622481253285158381, −5.53166881680342542228902308834, −4.50845484908740139404107116093, −3.95879686429694165893222914306, −3.28471184639679344045513309661, −2.52948032722165475441830069214, −1.64654038590767636903333916792, 0, 1.64654038590767636903333916792, 2.52948032722165475441830069214, 3.28471184639679344045513309661, 3.95879686429694165893222914306, 4.50845484908740139404107116093, 5.53166881680342542228902308834, 6.67881212838622481253285158381, 7.68198838538682480497091541735, 7.925951474418443176738486971457

Graph of the $Z$-function along the critical line