Properties

Label 2-5400-1.1-c1-0-19
Degree $2$
Conductor $5400$
Sign $1$
Analytic cond. $43.1192$
Root an. cond. $6.56652$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s − 2·11-s − 4·13-s + 17-s − 5·19-s + 5·23-s − 8·29-s + 7·31-s + 6·37-s − 6·41-s + 2·43-s + 8·47-s + 9·49-s + 9·53-s − 4·59-s + 13·61-s + 10·67-s + 6·71-s + 6·73-s − 8·77-s + 9·79-s − 17·83-s + 6·89-s − 16·91-s + 8·97-s − 12·101-s − 4·103-s + ⋯
L(s)  = 1  + 1.51·7-s − 0.603·11-s − 1.10·13-s + 0.242·17-s − 1.14·19-s + 1.04·23-s − 1.48·29-s + 1.25·31-s + 0.986·37-s − 0.937·41-s + 0.304·43-s + 1.16·47-s + 9/7·49-s + 1.23·53-s − 0.520·59-s + 1.66·61-s + 1.22·67-s + 0.712·71-s + 0.702·73-s − 0.911·77-s + 1.01·79-s − 1.86·83-s + 0.635·89-s − 1.67·91-s + 0.812·97-s − 1.19·101-s − 0.394·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5400\)    =    \(2^{3} \cdot 3^{3} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(43.1192\)
Root analytic conductor: \(6.56652\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.115445908\)
\(L(\frac12)\) \(\approx\) \(2.115445908\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 13 T + p T^{2} \) 1.61.an
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 9 T + p T^{2} \) 1.79.aj
83 \( 1 + 17 T + p T^{2} \) 1.83.r
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.200236871894429009128646007068, −7.48712254438609359127251495498, −6.96362131242169607346932744687, −5.86978245848317218524525630182, −5.12238460126295364130070310602, −4.68463194282086038135912565474, −3.83377998861779427686077657642, −2.55851900914552522563054013540, −2.03611294694083801808420297238, −0.78206232359650740359884138807, 0.78206232359650740359884138807, 2.03611294694083801808420297238, 2.55851900914552522563054013540, 3.83377998861779427686077657642, 4.68463194282086038135912565474, 5.12238460126295364130070310602, 5.86978245848317218524525630182, 6.96362131242169607346932744687, 7.48712254438609359127251495498, 8.200236871894429009128646007068

Graph of the $Z$-function along the critical line