Properties

Label 2-540-5.4-c1-0-7
Degree $2$
Conductor $540$
Sign $-0.707 + 0.707i$
Analytic cond. $4.31192$
Root an. cond. $2.07651$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.58 − 1.58i)5-s + i·7-s − 3.16·11-s − 3i·13-s − 6.32i·17-s − 3·19-s − 3.16i·23-s + 5.00i·25-s − 9.48·29-s − 2·31-s + (1.58 − 1.58i)35-s + i·37-s − 3.16·41-s − 10i·43-s + 6.32i·47-s + ⋯
L(s)  = 1  + (−0.707 − 0.707i)5-s + 0.377i·7-s − 0.953·11-s − 0.832i·13-s − 1.53i·17-s − 0.688·19-s − 0.659i·23-s + 1.00i·25-s − 1.76·29-s − 0.359·31-s + (0.267 − 0.267i)35-s + 0.164i·37-s − 0.493·41-s − 1.52i·43-s + 0.922i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(540\)    =    \(2^{2} \cdot 3^{3} \cdot 5\)
Sign: $-0.707 + 0.707i$
Analytic conductor: \(4.31192\)
Root analytic conductor: \(2.07651\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{540} (109, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 540,\ (\ :1/2),\ -0.707 + 0.707i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.245100 - 0.591724i\)
\(L(\frac12)\) \(\approx\) \(0.245100 - 0.591724i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (1.58 + 1.58i)T \)
good7 \( 1 - iT - 7T^{2} \)
11 \( 1 + 3.16T + 11T^{2} \)
13 \( 1 + 3iT - 13T^{2} \)
17 \( 1 + 6.32iT - 17T^{2} \)
19 \( 1 + 3T + 19T^{2} \)
23 \( 1 + 3.16iT - 23T^{2} \)
29 \( 1 + 9.48T + 29T^{2} \)
31 \( 1 + 2T + 31T^{2} \)
37 \( 1 - iT - 37T^{2} \)
41 \( 1 + 3.16T + 41T^{2} \)
43 \( 1 + 10iT - 43T^{2} \)
47 \( 1 - 6.32iT - 47T^{2} \)
53 \( 1 + 9.48iT - 53T^{2} \)
59 \( 1 - 6.32T + 59T^{2} \)
61 \( 1 + T + 61T^{2} \)
67 \( 1 - 11iT - 67T^{2} \)
71 \( 1 - 9.48T + 71T^{2} \)
73 \( 1 + 13iT - 73T^{2} \)
79 \( 1 - 3T + 79T^{2} \)
83 \( 1 - 15.8iT - 83T^{2} \)
89 \( 1 - 12.6T + 89T^{2} \)
97 \( 1 + iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.58032583879914652172345147998, −9.500423991163577270739730049517, −8.653527773618160145538112893087, −7.86528528412522724079353843836, −7.06336344421532421814038642601, −5.54945835612603859208996413079, −4.97329274697948220646736498621, −3.68838905701190899944937263707, −2.40614944817258005486158744738, −0.35332328426712925442445266471, 2.04062455265025563980423584219, 3.51083706802360544452006946189, 4.29503185762542678734933904786, 5.69349141421041870368883655237, 6.72201669085319595487951365473, 7.59311716056863857875950867392, 8.295158528276832617736283795132, 9.442163148021534276849440910948, 10.56641163195596602543201659097, 10.93517731343346390211662927956

Graph of the $Z$-function along the critical line