Properties

Label 2-540-1.1-c1-0-0
Degree $2$
Conductor $540$
Sign $1$
Analytic cond. $4.31192$
Root an. cond. $2.07651$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 2·7-s + 2·13-s + 3·17-s + 5·19-s − 3·23-s + 25-s + 6·29-s + 5·31-s − 2·35-s + 2·37-s − 12·41-s + 8·43-s + 12·47-s − 3·49-s + 3·53-s − 6·59-s − 7·61-s − 2·65-s + 2·67-s − 12·71-s − 16·73-s − 79-s + 15·83-s − 3·85-s + 12·89-s + 4·91-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.755·7-s + 0.554·13-s + 0.727·17-s + 1.14·19-s − 0.625·23-s + 1/5·25-s + 1.11·29-s + 0.898·31-s − 0.338·35-s + 0.328·37-s − 1.87·41-s + 1.21·43-s + 1.75·47-s − 3/7·49-s + 0.412·53-s − 0.781·59-s − 0.896·61-s − 0.248·65-s + 0.244·67-s − 1.42·71-s − 1.87·73-s − 0.112·79-s + 1.64·83-s − 0.325·85-s + 1.27·89-s + 0.419·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(540\)    =    \(2^{2} \cdot 3^{3} \cdot 5\)
Sign: $1$
Analytic conductor: \(4.31192\)
Root analytic conductor: \(2.07651\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 540,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.524374499\)
\(L(\frac12)\) \(\approx\) \(1.524374499\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 12 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 - 3 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 + 7 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + 16 T + p T^{2} \)
79 \( 1 + T + p T^{2} \)
83 \( 1 - 15 T + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 + 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.80799962022765933499638365454, −10.05815610462548757364234587037, −8.935925621137214438533796074475, −8.075757804585481763389308605687, −7.41769324058008963967501874807, −6.19290173727045335804565486285, −5.15656604704510166418064747088, −4.14163068051343696678482509679, −2.94641868410306170011925698041, −1.24500108130507230710940864754, 1.24500108130507230710940864754, 2.94641868410306170011925698041, 4.14163068051343696678482509679, 5.15656604704510166418064747088, 6.19290173727045335804565486285, 7.41769324058008963967501874807, 8.075757804585481763389308605687, 8.935925621137214438533796074475, 10.05815610462548757364234587037, 10.80799962022765933499638365454

Graph of the $Z$-function along the critical line