L(s) = 1 | + (1 − 1.73i)2-s + (−1.99 − 3.46i)4-s + (−4.5 − 7.79i)5-s + (15.5 − 26.8i)7-s − 7.99·8-s − 18·10-s + (−7.5 + 12.9i)11-s + (18.5 + 32.0i)13-s + (−31 − 53.6i)14-s + (−8 + 13.8i)16-s + 42·17-s − 28·19-s + (−18 + 31.1i)20-s + (15 + 25.9i)22-s + (97.5 + 168. i)23-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.402 − 0.697i)5-s + (0.836 − 1.44i)7-s − 0.353·8-s − 0.569·10-s + (−0.205 + 0.356i)11-s + (0.394 + 0.683i)13-s + (−0.591 − 1.02i)14-s + (−0.125 + 0.216i)16-s + 0.599·17-s − 0.338·19-s + (−0.201 + 0.348i)20-s + (0.145 + 0.251i)22-s + (0.883 + 1.53i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.00245 - 1.19468i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.00245 - 1.19468i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 + 1.73i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (4.5 + 7.79i)T + (-62.5 + 108. i)T^{2} \) |
| 7 | \( 1 + (-15.5 + 26.8i)T + (-171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (7.5 - 12.9i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + (-18.5 - 32.0i)T + (-1.09e3 + 1.90e3i)T^{2} \) |
| 17 | \( 1 - 42T + 4.91e3T^{2} \) |
| 19 | \( 1 + 28T + 6.85e3T^{2} \) |
| 23 | \( 1 + (-97.5 - 168. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-55.5 + 96.1i)T + (-1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 + (-102.5 - 177. i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + 166T + 5.06e4T^{2} \) |
| 41 | \( 1 + (130.5 + 226. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-21.5 + 37.2i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + (-88.5 + 153. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + 114T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-79.5 - 137. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (95.5 - 165. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-210.5 - 364. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 156T + 3.57e5T^{2} \) |
| 73 | \( 1 - 182T + 3.89e5T^{2} \) |
| 79 | \( 1 + (566.5 - 981. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + (541.5 - 937. i)T + (-2.85e5 - 4.95e5i)T^{2} \) |
| 89 | \( 1 - 1.05e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + (-450.5 + 780. i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.20298220101703776844239061329, −13.46427293191319197544746231442, −12.19129070562825900658008414996, −11.16313383320124276922929689355, −10.09586647798347804500733231754, −8.534537828215533188585232935729, −7.18133267313911356192398236147, −5.00133114795564324482843121360, −3.91088914816389999323346118898, −1.23133572582289642226086381519,
2.94885710203272923111949208319, 5.02723470767631444413009937051, 6.29245567947477732017370394080, 7.894905011763843281176777610457, 8.803566294988039478729661914623, 10.72487723710863937749488304131, 11.83405778830498556614481465217, 12.93094188716750862086067381351, 14.49245214391693565550972853206, 15.02788543344782576002839256292