L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (−1 + 1.73i)7-s − 0.999·8-s + (−1.5 + 2.59i)11-s + (−1 − 1.73i)13-s + (0.999 + 1.73i)14-s + (−0.5 + 0.866i)16-s + 3·17-s − 19-s + (1.5 + 2.59i)22-s + (−3 − 5.19i)23-s + (2.5 − 4.33i)25-s − 1.99·26-s + 1.99·28-s + (3 − 5.19i)29-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.377 + 0.654i)7-s − 0.353·8-s + (−0.452 + 0.783i)11-s + (−0.277 − 0.480i)13-s + (0.267 + 0.462i)14-s + (−0.125 + 0.216i)16-s + 0.727·17-s − 0.229·19-s + (0.319 + 0.553i)22-s + (−0.625 − 1.08i)23-s + (0.5 − 0.866i)25-s − 0.392·26-s + 0.377·28-s + (0.557 − 0.964i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.877258 - 0.319296i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.877258 - 0.319296i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (1 - 1.73i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.5 - 2.59i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1 + 1.73i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 3T + 17T^{2} \) |
| 19 | \( 1 + T + 19T^{2} \) |
| 23 | \( 1 + (3 + 5.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3 + 5.19i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2 - 3.46i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 4T + 37T^{2} \) |
| 41 | \( 1 + (-4.5 - 7.79i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (3 - 5.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 12T + 53T^{2} \) |
| 59 | \( 1 + (-1.5 - 2.59i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4 - 6.92i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.5 + 4.33i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 12T + 71T^{2} \) |
| 73 | \( 1 - 11T + 73T^{2} \) |
| 79 | \( 1 + (-2 + 3.46i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-6 + 10.3i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 6T + 89T^{2} \) |
| 97 | \( 1 + (2.5 - 4.33i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.12688103669667857937205546939, −14.09692654269574911820876482947, −12.65616926729159557398117926597, −12.17511820172585237543301203042, −10.57427835288387395140515205717, −9.644156657279471627612142445110, −8.109217585919713043018362675136, −6.24346619468319563425589462519, −4.71102187921828010545904359307, −2.69831856592917915664558595168,
3.57176631322221135410380789907, 5.35381362714877193537420366400, 6.82058941932479782202029435549, 8.035203487704401873263663516929, 9.517129125896991291576106911816, 10.91361990419339911954793543618, 12.33645744571137792579080469536, 13.51017109175237931670563352488, 14.27482924604470976704252044001, 15.59861712213794375411483361128