Properties

Label 2-54-27.2-c2-0-0
Degree $2$
Conductor $54$
Sign $0.842 - 0.538i$
Analytic cond. $1.47139$
Root an. cond. $1.21301$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.39 − 0.245i)2-s + (−2.97 − 0.418i)3-s + (1.87 + 0.684i)4-s + (5.54 + 6.61i)5-s + (4.03 + 1.31i)6-s + (7.83 − 2.85i)7-s + (−2.44 − 1.41i)8-s + (8.64 + 2.48i)9-s + (−6.10 − 10.5i)10-s + (−10.8 + 12.8i)11-s + (−5.29 − 2.81i)12-s + (0.524 + 2.97i)13-s + (−11.6 + 2.04i)14-s + (−13.7 − 21.9i)15-s + (3.06 + 2.57i)16-s + (8.43 − 4.87i)17-s + ⋯
L(s)  = 1  + (−0.696 − 0.122i)2-s + (−0.990 − 0.139i)3-s + (0.469 + 0.171i)4-s + (1.10 + 1.32i)5-s + (0.672 + 0.218i)6-s + (1.11 − 0.407i)7-s + (−0.306 − 0.176i)8-s + (0.961 + 0.276i)9-s + (−0.610 − 1.05i)10-s + (−0.983 + 1.17i)11-s + (−0.441 − 0.234i)12-s + (0.0403 + 0.229i)13-s + (−0.829 + 0.146i)14-s + (−0.914 − 1.46i)15-s + (0.191 + 0.160i)16-s + (0.496 − 0.286i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.842 - 0.538i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.842 - 0.538i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54\)    =    \(2 \cdot 3^{3}\)
Sign: $0.842 - 0.538i$
Analytic conductor: \(1.47139\)
Root analytic conductor: \(1.21301\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{54} (29, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 54,\ (\ :1),\ 0.842 - 0.538i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.770323 + 0.225348i\)
\(L(\frac12)\) \(\approx\) \(0.770323 + 0.225348i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.39 + 0.245i)T \)
3 \( 1 + (2.97 + 0.418i)T \)
good5 \( 1 + (-5.54 - 6.61i)T + (-4.34 + 24.6i)T^{2} \)
7 \( 1 + (-7.83 + 2.85i)T + (37.5 - 31.4i)T^{2} \)
11 \( 1 + (10.8 - 12.8i)T + (-21.0 - 119. i)T^{2} \)
13 \( 1 + (-0.524 - 2.97i)T + (-158. + 57.8i)T^{2} \)
17 \( 1 + (-8.43 + 4.87i)T + (144.5 - 250. i)T^{2} \)
19 \( 1 + (-3.84 + 6.66i)T + (-180.5 - 312. i)T^{2} \)
23 \( 1 + (-10.1 + 27.8i)T + (-405. - 340. i)T^{2} \)
29 \( 1 + (10.5 + 1.86i)T + (790. + 287. i)T^{2} \)
31 \( 1 + (10.8 + 3.93i)T + (736. + 617. i)T^{2} \)
37 \( 1 + (11.5 + 20.0i)T + (-684.5 + 1.18e3i)T^{2} \)
41 \( 1 + (16.7 - 2.94i)T + (1.57e3 - 574. i)T^{2} \)
43 \( 1 + (-18.0 - 15.1i)T + (321. + 1.82e3i)T^{2} \)
47 \( 1 + (5.67 + 15.6i)T + (-1.69e3 + 1.41e3i)T^{2} \)
53 \( 1 + 75.3iT - 2.80e3T^{2} \)
59 \( 1 + (38.6 + 46.1i)T + (-604. + 3.42e3i)T^{2} \)
61 \( 1 + (-32.1 + 11.6i)T + (2.85e3 - 2.39e3i)T^{2} \)
67 \( 1 + (-6.53 - 37.0i)T + (-4.21e3 + 1.53e3i)T^{2} \)
71 \( 1 + (-44.0 + 25.4i)T + (2.52e3 - 4.36e3i)T^{2} \)
73 \( 1 + (-49.2 + 85.2i)T + (-2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (14.0 - 79.9i)T + (-5.86e3 - 2.13e3i)T^{2} \)
83 \( 1 + (15.8 + 2.80i)T + (6.47e3 + 2.35e3i)T^{2} \)
89 \( 1 + (-14.0 - 8.09i)T + (3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 + (101. + 85.2i)T + (1.63e3 + 9.26e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.23773494361804746413330517413, −14.20748571995648656676224274125, −12.80230830303873372596826820238, −11.30329607011693468790171371156, −10.57938475840893397492130989648, −9.800009875912268214626635320784, −7.59975714653899447385896847908, −6.70343647371311202658993173119, −5.13289823889981459456228717844, −2.07724977452773776644285081210, 1.34437959257986767643153912992, 5.23889869829205570672871380794, 5.73857685115579881784901882139, 7.939409860290884159421490989189, 9.075617442566873236751535468153, 10.31201103143598750384660982408, 11.39603090768557399976781996781, 12.59517926853290457650218297148, 13.74015622142948080689533196053, 15.44951406976819285820924153438

Graph of the $Z$-function along the critical line