Properties

Label 2-54-27.13-c1-0-2
Degree $2$
Conductor $54$
Sign $0.0581 + 0.998i$
Analytic cond. $0.431192$
Root an. cond. $0.656652$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.173 − 0.984i)2-s + (−0.592 − 1.62i)3-s + (−0.939 + 0.342i)4-s + (−0.673 − 0.565i)5-s + (−1.5 + 0.866i)6-s + (3.31 + 1.20i)7-s + (0.5 + 0.866i)8-s + (−2.29 + 1.92i)9-s + (−0.439 + 0.761i)10-s + (2.73 − 2.29i)11-s + (1.11 + 1.32i)12-s + (−0.641 + 3.63i)13-s + (0.613 − 3.47i)14-s + (−0.520 + 1.43i)15-s + (0.766 − 0.642i)16-s + (−3.12 + 5.41i)17-s + ⋯
L(s)  = 1  + (−0.122 − 0.696i)2-s + (−0.342 − 0.939i)3-s + (−0.469 + 0.171i)4-s + (−0.301 − 0.252i)5-s + (−0.612 + 0.353i)6-s + (1.25 + 0.456i)7-s + (0.176 + 0.306i)8-s + (−0.766 + 0.642i)9-s + (−0.139 + 0.240i)10-s + (0.825 − 0.692i)11-s + (0.321 + 0.383i)12-s + (−0.177 + 1.00i)13-s + (0.163 − 0.929i)14-s + (−0.134 + 0.369i)15-s + (0.191 − 0.160i)16-s + (−0.757 + 1.31i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0581 + 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0581 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54\)    =    \(2 \cdot 3^{3}\)
Sign: $0.0581 + 0.998i$
Analytic conductor: \(0.431192\)
Root analytic conductor: \(0.656652\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{54} (13, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 54,\ (\ :1/2),\ 0.0581 + 0.998i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.534690 - 0.504454i\)
\(L(\frac12)\) \(\approx\) \(0.534690 - 0.504454i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.173 + 0.984i)T \)
3 \( 1 + (0.592 + 1.62i)T \)
good5 \( 1 + (0.673 + 0.565i)T + (0.868 + 4.92i)T^{2} \)
7 \( 1 + (-3.31 - 1.20i)T + (5.36 + 4.49i)T^{2} \)
11 \( 1 + (-2.73 + 2.29i)T + (1.91 - 10.8i)T^{2} \)
13 \( 1 + (0.641 - 3.63i)T + (-12.2 - 4.44i)T^{2} \)
17 \( 1 + (3.12 - 5.41i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (2.08 + 3.61i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (1.93 - 0.705i)T + (17.6 - 14.7i)T^{2} \)
29 \( 1 + (-0.0282 - 0.160i)T + (-27.2 + 9.91i)T^{2} \)
31 \( 1 + (1.53 - 0.560i)T + (23.7 - 19.9i)T^{2} \)
37 \( 1 + (-3.85 + 6.68i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (1.33 - 7.58i)T + (-38.5 - 14.0i)T^{2} \)
43 \( 1 + (8.29 - 6.95i)T + (7.46 - 42.3i)T^{2} \)
47 \( 1 + (-6.02 - 2.19i)T + (36.0 + 30.2i)T^{2} \)
53 \( 1 - 0.716T + 53T^{2} \)
59 \( 1 + (5.35 + 4.49i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (-1.19 - 0.433i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (-0.624 + 3.54i)T + (-62.9 - 22.9i)T^{2} \)
71 \( 1 + (-6.76 + 11.7i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (-1.16 - 2.01i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (1.14 + 6.51i)T + (-74.2 + 27.0i)T^{2} \)
83 \( 1 + (0.773 + 4.38i)T + (-77.9 + 28.3i)T^{2} \)
89 \( 1 + (4.62 + 8.00i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (8.64 - 7.25i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.78515912161169768974137448661, −13.82135480805910909119088915970, −12.58992602598772091875007465145, −11.57943101774857697278610835520, −11.05401582284760249851472027487, −8.905197427637646271298323099057, −8.083325919406855249335331831647, −6.31489566462143453866589393772, −4.51134062858418943789196767720, −1.86065738423948769723059802847, 4.13495627452181637836522602533, 5.31043601170801833382712253419, 7.08234984376031732557831993934, 8.406855106686713702850468837463, 9.782513291835111844702113889677, 10.92541084352993015091190066531, 11.99185661423792833650645331625, 13.89526051461352899044029549778, 14.88381728902378626140332815743, 15.44525257634354937000249238058

Graph of the $Z$-function along the critical line