L(s) = 1 | + (7.27 − 8.66i)2-s + (30.8 + 74.8i)3-s + (−22.2 − 126. i)4-s + (187. − 513. i)5-s + (873. + 276. i)6-s + (−775. + 4.39e3i)7-s + (−1.25e3 − 724. i)8-s + (−4.65e3 + 4.62e3i)9-s + (−3.09e3 − 5.35e3i)10-s + (−1.40e3 − 3.85e3i)11-s + (8.75e3 − 5.55e3i)12-s + (−1.48e4 + 1.24e4i)13-s + (3.24e4 + 3.87e4i)14-s + (4.42e4 − 1.86e3i)15-s + (−1.53e4 + 5.60e3i)16-s + (8.97e4 − 5.18e4i)17-s + ⋯ |
L(s) = 1 | + (0.454 − 0.541i)2-s + (0.381 + 0.924i)3-s + (−0.0868 − 0.492i)4-s + (0.299 − 0.822i)5-s + (0.674 + 0.213i)6-s + (−0.322 + 1.83i)7-s + (−0.306 − 0.176i)8-s + (−0.709 + 0.705i)9-s + (−0.309 − 0.535i)10-s + (−0.0958 − 0.263i)11-s + (0.422 − 0.268i)12-s + (−0.518 + 0.435i)13-s + (0.845 + 1.00i)14-s + (0.874 − 0.0369i)15-s + (−0.234 + 0.0855i)16-s + (1.07 − 0.620i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(−0.0683−0.997i)Λ(9−s)
Λ(s)=(=(54s/2ΓC(s+4)L(s)(−0.0683−0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
−0.0683−0.997i
|
Analytic conductor: |
21.9984 |
Root analytic conductor: |
4.69024 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :4), −0.0683−0.997i)
|
Particular Values
L(29) |
≈ |
1.35719+1.45341i |
L(21) |
≈ |
1.35719+1.45341i |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−7.27+8.66i)T |
| 3 | 1+(−30.8−74.8i)T |
good | 5 | 1+(−187.+513.i)T+(−2.99e5−2.51e5i)T2 |
| 7 | 1+(775.−4.39e3i)T+(−5.41e6−1.97e6i)T2 |
| 11 | 1+(1.40e3+3.85e3i)T+(−1.64e8+1.37e8i)T2 |
| 13 | 1+(1.48e4−1.24e4i)T+(1.41e8−8.03e8i)T2 |
| 17 | 1+(−8.97e4+5.18e4i)T+(3.48e9−6.04e9i)T2 |
| 19 | 1+(1.17e5−2.03e5i)T+(−8.49e9−1.47e10i)T2 |
| 23 | 1+(1.39e5−2.45e4i)T+(7.35e10−2.67e10i)T2 |
| 29 | 1+(3.66e5−4.36e5i)T+(−8.68e10−4.92e11i)T2 |
| 31 | 1+(−2.71e5−1.54e6i)T+(−8.01e11+2.91e11i)T2 |
| 37 | 1+(−1.12e6−1.95e6i)T+(−1.75e12+3.04e12i)T2 |
| 41 | 1+(3.31e6+3.95e6i)T+(−1.38e12+7.86e12i)T2 |
| 43 | 1+(−2.41e6+8.80e5i)T+(8.95e12−7.51e12i)T2 |
| 47 | 1+(−6.74e6−1.18e6i)T+(2.23e13+8.14e12i)T2 |
| 53 | 1+9.71e6iT−6.22e13T2 |
| 59 | 1+(2.73e6−7.50e6i)T+(−1.12e14−9.43e13i)T2 |
| 61 | 1+(3.74e5−2.12e6i)T+(−1.80e14−6.55e13i)T2 |
| 67 | 1+(−8.75e6+7.34e6i)T+(7.05e13−3.99e14i)T2 |
| 71 | 1+(−5.23e6+3.02e6i)T+(3.22e14−5.59e14i)T2 |
| 73 | 1+(−1.90e7+3.29e7i)T+(−4.03e14−6.98e14i)T2 |
| 79 | 1+(1.72e7+1.44e7i)T+(2.63e14+1.49e15i)T2 |
| 83 | 1+(−3.02e6+3.60e6i)T+(−3.91e14−2.21e15i)T2 |
| 89 | 1+(7.31e6+4.22e6i)T+(1.96e15+3.40e15i)T2 |
| 97 | 1+(−5.35e7+1.94e7i)T+(6.00e15−5.03e15i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.05010576435618555246843128694, −12.51436964954659235730093465531, −11.94550450571719927897468677815, −10.27843474795272566869730806371, −9.267011426318175592035523236885, −8.491223124125208679198069553123, −5.76732637173604404000212615095, −5.01457832461848556349516364668, −3.31759894177991294763997888793, −1.98721456761584310916131246306,
0.54344446707692782547095444268, 2.61810637353338520584852118534, 4.05992248348343776200902257012, 6.18702294908066301225746867598, 7.14572358709317984087919009652, 7.87513248773061581535021754535, 9.826444610027161771602654195983, 11.05030948892874545213719882721, 12.71202210721749701205718725392, 13.46755186028223101631771306735