Properties

Label 2-54-27.11-c2-0-4
Degree $2$
Conductor $54$
Sign $-0.0495 + 0.998i$
Analytic cond. $1.47139$
Root an. cond. $1.21301$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.909 − 1.08i)2-s + (−2.95 − 0.512i)3-s + (−0.347 − 1.96i)4-s + (2.71 − 7.45i)5-s + (−3.24 + 2.73i)6-s + (0.0787 − 0.446i)7-s + (−2.44 − 1.41i)8-s + (8.47 + 3.02i)9-s + (−5.60 − 9.71i)10-s + (4.82 + 13.2i)11-s + (0.0171 + 5.99i)12-s + (−9.80 + 8.22i)13-s + (−0.412 − 0.491i)14-s + (−11.8 + 20.6i)15-s + (−3.75 + 1.36i)16-s + (28.5 − 16.4i)17-s + ⋯
L(s)  = 1  + (0.454 − 0.541i)2-s + (−0.985 − 0.170i)3-s + (−0.0868 − 0.492i)4-s + (0.542 − 1.49i)5-s + (−0.540 + 0.456i)6-s + (0.0112 − 0.0638i)7-s + (−0.306 − 0.176i)8-s + (0.941 + 0.336i)9-s + (−0.560 − 0.971i)10-s + (0.438 + 1.20i)11-s + (0.00143 + 0.499i)12-s + (−0.754 + 0.632i)13-s + (−0.0294 − 0.0351i)14-s + (−0.789 + 1.37i)15-s + (−0.234 + 0.0855i)16-s + (1.67 − 0.969i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0495 + 0.998i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.0495 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54\)    =    \(2 \cdot 3^{3}\)
Sign: $-0.0495 + 0.998i$
Analytic conductor: \(1.47139\)
Root analytic conductor: \(1.21301\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{54} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 54,\ (\ :1),\ -0.0495 + 0.998i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.801091 - 0.841840i\)
\(L(\frac12)\) \(\approx\) \(0.801091 - 0.841840i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.909 + 1.08i)T \)
3 \( 1 + (2.95 + 0.512i)T \)
good5 \( 1 + (-2.71 + 7.45i)T + (-19.1 - 16.0i)T^{2} \)
7 \( 1 + (-0.0787 + 0.446i)T + (-46.0 - 16.7i)T^{2} \)
11 \( 1 + (-4.82 - 13.2i)T + (-92.6 + 77.7i)T^{2} \)
13 \( 1 + (9.80 - 8.22i)T + (29.3 - 166. i)T^{2} \)
17 \( 1 + (-28.5 + 16.4i)T + (144.5 - 250. i)T^{2} \)
19 \( 1 + (-0.202 + 0.351i)T + (-180.5 - 312. i)T^{2} \)
23 \( 1 + (-14.2 + 2.51i)T + (497. - 180. i)T^{2} \)
29 \( 1 + (16.8 - 20.0i)T + (-146. - 828. i)T^{2} \)
31 \( 1 + (-4.33 - 24.6i)T + (-903. + 328. i)T^{2} \)
37 \( 1 + (-3.84 - 6.65i)T + (-684.5 + 1.18e3i)T^{2} \)
41 \( 1 + (15.9 + 18.9i)T + (-291. + 1.65e3i)T^{2} \)
43 \( 1 + (16.8 - 6.13i)T + (1.41e3 - 1.18e3i)T^{2} \)
47 \( 1 + (46.7 + 8.24i)T + (2.07e3 + 755. i)T^{2} \)
53 \( 1 - 0.261iT - 2.80e3T^{2} \)
59 \( 1 + (-18.8 + 51.7i)T + (-2.66e3 - 2.23e3i)T^{2} \)
61 \( 1 + (18.1 - 103. i)T + (-3.49e3 - 1.27e3i)T^{2} \)
67 \( 1 + (49.4 - 41.5i)T + (779. - 4.42e3i)T^{2} \)
71 \( 1 + (94.6 - 54.6i)T + (2.52e3 - 4.36e3i)T^{2} \)
73 \( 1 + (-31.4 + 54.5i)T + (-2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (14.7 + 12.3i)T + (1.08e3 + 6.14e3i)T^{2} \)
83 \( 1 + (-36.7 + 43.7i)T + (-1.19e3 - 6.78e3i)T^{2} \)
89 \( 1 + (-89.7 - 51.8i)T + (3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 + (52.8 - 19.2i)T + (7.20e3 - 6.04e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.63659495007173232695284856805, −13.30975533988698384722493862788, −12.30444002368090790684641842240, −11.91472224811346262774028532794, −10.12242134535871983312392153510, −9.292237550333178996523448569262, −7.15083503525383830451260416508, −5.38485266564028263576716573466, −4.64240913726474890267412423156, −1.41090898549712650034754932274, 3.40575499655363090947144870374, 5.58580739548615630688803097536, 6.35309309687222240865104765000, 7.66851459705219236856100251635, 9.848784475471328167653082518452, 10.83710250122808227529506411666, 11.92125065442921931289912108490, 13.28492442479197956528118945505, 14.53930511992143102586237651661, 15.17380170452530639676301767123

Graph of the $Z$-function along the critical line