L(s) = 1 | + (0.909 − 1.08i)2-s + (−2.95 − 0.512i)3-s + (−0.347 − 1.96i)4-s + (2.71 − 7.45i)5-s + (−3.24 + 2.73i)6-s + (0.0787 − 0.446i)7-s + (−2.44 − 1.41i)8-s + (8.47 + 3.02i)9-s + (−5.60 − 9.71i)10-s + (4.82 + 13.2i)11-s + (0.0171 + 5.99i)12-s + (−9.80 + 8.22i)13-s + (−0.412 − 0.491i)14-s + (−11.8 + 20.6i)15-s + (−3.75 + 1.36i)16-s + (28.5 − 16.4i)17-s + ⋯ |
L(s) = 1 | + (0.454 − 0.541i)2-s + (−0.985 − 0.170i)3-s + (−0.0868 − 0.492i)4-s + (0.542 − 1.49i)5-s + (−0.540 + 0.456i)6-s + (0.0112 − 0.0638i)7-s + (−0.306 − 0.176i)8-s + (0.941 + 0.336i)9-s + (−0.560 − 0.971i)10-s + (0.438 + 1.20i)11-s + (0.00143 + 0.499i)12-s + (−0.754 + 0.632i)13-s + (−0.0294 − 0.0351i)14-s + (−0.789 + 1.37i)15-s + (−0.234 + 0.0855i)16-s + (1.67 − 0.969i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(−0.0495+0.998i)Λ(3−s)
Λ(s)=(=(54s/2ΓC(s+1)L(s)(−0.0495+0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
−0.0495+0.998i
|
Analytic conductor: |
1.47139 |
Root analytic conductor: |
1.21301 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :1), −0.0495+0.998i)
|
Particular Values
L(23) |
≈ |
0.801091−0.841840i |
L(21) |
≈ |
0.801091−0.841840i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.909+1.08i)T |
| 3 | 1+(2.95+0.512i)T |
good | 5 | 1+(−2.71+7.45i)T+(−19.1−16.0i)T2 |
| 7 | 1+(−0.0787+0.446i)T+(−46.0−16.7i)T2 |
| 11 | 1+(−4.82−13.2i)T+(−92.6+77.7i)T2 |
| 13 | 1+(9.80−8.22i)T+(29.3−166.i)T2 |
| 17 | 1+(−28.5+16.4i)T+(144.5−250.i)T2 |
| 19 | 1+(−0.202+0.351i)T+(−180.5−312.i)T2 |
| 23 | 1+(−14.2+2.51i)T+(497.−180.i)T2 |
| 29 | 1+(16.8−20.0i)T+(−146.−828.i)T2 |
| 31 | 1+(−4.33−24.6i)T+(−903.+328.i)T2 |
| 37 | 1+(−3.84−6.65i)T+(−684.5+1.18e3i)T2 |
| 41 | 1+(15.9+18.9i)T+(−291.+1.65e3i)T2 |
| 43 | 1+(16.8−6.13i)T+(1.41e3−1.18e3i)T2 |
| 47 | 1+(46.7+8.24i)T+(2.07e3+755.i)T2 |
| 53 | 1−0.261iT−2.80e3T2 |
| 59 | 1+(−18.8+51.7i)T+(−2.66e3−2.23e3i)T2 |
| 61 | 1+(18.1−103.i)T+(−3.49e3−1.27e3i)T2 |
| 67 | 1+(49.4−41.5i)T+(779.−4.42e3i)T2 |
| 71 | 1+(94.6−54.6i)T+(2.52e3−4.36e3i)T2 |
| 73 | 1+(−31.4+54.5i)T+(−2.66e3−4.61e3i)T2 |
| 79 | 1+(14.7+12.3i)T+(1.08e3+6.14e3i)T2 |
| 83 | 1+(−36.7+43.7i)T+(−1.19e3−6.78e3i)T2 |
| 89 | 1+(−89.7−51.8i)T+(3.96e3+6.85e3i)T2 |
| 97 | 1+(52.8−19.2i)T+(7.20e3−6.04e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.63659495007173232695284856805, −13.30975533988698384722493862788, −12.30444002368090790684641842240, −11.91472224811346262774028532794, −10.12242134535871983312392153510, −9.292237550333178996523448569262, −7.15083503525383830451260416508, −5.38485266564028263576716573466, −4.64240913726474890267412423156, −1.41090898549712650034754932274,
3.40575499655363090947144870374, 5.58580739548615630688803097536, 6.35309309687222240865104765000, 7.66851459705219236856100251635, 9.848784475471328167653082518452, 10.83710250122808227529506411666, 11.92125065442921931289912108490, 13.28492442479197956528118945505, 14.53930511992143102586237651661, 15.17380170452530639676301767123