Properties

Label 2-54-27.11-c2-0-2
Degree $2$
Conductor $54$
Sign $0.959 + 0.281i$
Analytic cond. $1.47139$
Root an. cond. $1.21301$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.909 − 1.08i)2-s + (2.14 + 2.09i)3-s + (−0.347 − 1.96i)4-s + (0.387 − 1.06i)5-s + (4.22 − 0.418i)6-s + (−0.332 + 1.88i)7-s + (−2.44 − 1.41i)8-s + (0.205 + 8.99i)9-s + (−0.800 − 1.38i)10-s + (−6.05 − 16.6i)11-s + (3.38 − 4.95i)12-s + (−9.14 + 7.67i)13-s + (1.73 + 2.07i)14-s + (3.06 − 1.47i)15-s + (−3.75 + 1.36i)16-s + (−2.93 + 1.69i)17-s + ⋯
L(s)  = 1  + (0.454 − 0.541i)2-s + (0.715 + 0.698i)3-s + (−0.0868 − 0.492i)4-s + (0.0774 − 0.212i)5-s + (0.703 − 0.0696i)6-s + (−0.0474 + 0.269i)7-s + (−0.306 − 0.176i)8-s + (0.0228 + 0.999i)9-s + (−0.0800 − 0.138i)10-s + (−0.550 − 1.51i)11-s + (0.282 − 0.412i)12-s + (−0.703 + 0.590i)13-s + (0.124 + 0.148i)14-s + (0.204 − 0.0980i)15-s + (−0.234 + 0.0855i)16-s + (−0.172 + 0.0998i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.959 + 0.281i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.959 + 0.281i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54\)    =    \(2 \cdot 3^{3}\)
Sign: $0.959 + 0.281i$
Analytic conductor: \(1.47139\)
Root analytic conductor: \(1.21301\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{54} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 54,\ (\ :1),\ 0.959 + 0.281i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.61130 - 0.231750i\)
\(L(\frac12)\) \(\approx\) \(1.61130 - 0.231750i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.909 + 1.08i)T \)
3 \( 1 + (-2.14 - 2.09i)T \)
good5 \( 1 + (-0.387 + 1.06i)T + (-19.1 - 16.0i)T^{2} \)
7 \( 1 + (0.332 - 1.88i)T + (-46.0 - 16.7i)T^{2} \)
11 \( 1 + (6.05 + 16.6i)T + (-92.6 + 77.7i)T^{2} \)
13 \( 1 + (9.14 - 7.67i)T + (29.3 - 166. i)T^{2} \)
17 \( 1 + (2.93 - 1.69i)T + (144.5 - 250. i)T^{2} \)
19 \( 1 + (10.2 - 17.7i)T + (-180.5 - 312. i)T^{2} \)
23 \( 1 + (-0.678 + 0.119i)T + (497. - 180. i)T^{2} \)
29 \( 1 + (-34.6 + 41.3i)T + (-146. - 828. i)T^{2} \)
31 \( 1 + (7.33 + 41.6i)T + (-903. + 328. i)T^{2} \)
37 \( 1 + (-8.24 - 14.2i)T + (-684.5 + 1.18e3i)T^{2} \)
41 \( 1 + (-26.0 - 30.9i)T + (-291. + 1.65e3i)T^{2} \)
43 \( 1 + (-66.4 + 24.1i)T + (1.41e3 - 1.18e3i)T^{2} \)
47 \( 1 + (62.9 + 11.1i)T + (2.07e3 + 755. i)T^{2} \)
53 \( 1 - 17.6iT - 2.80e3T^{2} \)
59 \( 1 + (19.1 - 52.5i)T + (-2.66e3 - 2.23e3i)T^{2} \)
61 \( 1 + (-11.5 + 65.3i)T + (-3.49e3 - 1.27e3i)T^{2} \)
67 \( 1 + (17.2 - 14.5i)T + (779. - 4.42e3i)T^{2} \)
71 \( 1 + (43.0 - 24.8i)T + (2.52e3 - 4.36e3i)T^{2} \)
73 \( 1 + (45.2 - 78.3i)T + (-2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (57.2 + 48.0i)T + (1.08e3 + 6.14e3i)T^{2} \)
83 \( 1 + (-8.15 + 9.72i)T + (-1.19e3 - 6.78e3i)T^{2} \)
89 \( 1 + (-58.5 - 33.7i)T + (3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 + (44.2 - 16.1i)T + (7.20e3 - 6.04e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.87122689168945020002994630760, −13.93630217019487460819943914325, −13.00294870510459137150550750266, −11.53409530170406675839759242730, −10.42199727332834172671937324208, −9.258061038737906162539983676691, −8.103107543721627101831930090124, −5.81215819023315919655327727023, −4.28662529850780581039586903138, −2.68933398913361649537474341982, 2.69634484913065404676123428739, 4.75726040545208337705403596433, 6.76710677094160569160493727486, 7.51851863961740118387786042875, 8.926589304882862890056795410043, 10.41008307445508280843543008784, 12.39250973225327104725136708672, 12.88226591393590831507570933532, 14.22230990021033691002408344258, 14.90772595066502435647568610329

Graph of the $Z$-function along the critical line