Properties

Label 2-54-1.1-c1-0-0
Degree $2$
Conductor $54$
Sign $1$
Analytic cond. $0.431192$
Root an. cond. $0.656652$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 3·5-s − 7-s − 8-s − 3·10-s − 3·11-s − 4·13-s + 14-s + 16-s + 2·19-s + 3·20-s + 3·22-s − 6·23-s + 4·25-s + 4·26-s − 28-s + 6·29-s + 5·31-s − 32-s − 3·35-s + 2·37-s − 2·38-s − 3·40-s − 6·41-s − 10·43-s − 3·44-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.34·5-s − 0.377·7-s − 0.353·8-s − 0.948·10-s − 0.904·11-s − 1.10·13-s + 0.267·14-s + 1/4·16-s + 0.458·19-s + 0.670·20-s + 0.639·22-s − 1.25·23-s + 4/5·25-s + 0.784·26-s − 0.188·28-s + 1.11·29-s + 0.898·31-s − 0.176·32-s − 0.507·35-s + 0.328·37-s − 0.324·38-s − 0.474·40-s − 0.937·41-s − 1.52·43-s − 0.452·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54\)    =    \(2 \cdot 3^{3}\)
Sign: $1$
Analytic conductor: \(0.431192\)
Root analytic conductor: \(0.656652\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 54,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7015748253\)
\(L(\frac12)\) \(\approx\) \(0.7015748253\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 10 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 - 14 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 7 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 3 T + p T^{2} \)
89 \( 1 + 18 T + p T^{2} \)
97 \( 1 + T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.58696880941000439507698489650, −14.21020099102705153396393794850, −13.18302012248397519939912394649, −11.91184860007480462763991644584, −10.11526477822370291644410044895, −9.872045258839871807563899217385, −8.268048909391662018895990050852, −6.73860900674537002760989556093, −5.37363015537505503550836847886, −2.44850978333263328730546301919, 2.44850978333263328730546301919, 5.37363015537505503550836847886, 6.73860900674537002760989556093, 8.268048909391662018895990050852, 9.872045258839871807563899217385, 10.11526477822370291644410044895, 11.91184860007480462763991644584, 13.18302012248397519939912394649, 14.21020099102705153396393794850, 15.58696880941000439507698489650

Graph of the $Z$-function along the critical line