Properties

Label 2-5390-1.1-c1-0-71
Degree $2$
Conductor $5390$
Sign $1$
Analytic cond. $43.0393$
Root an. cond. $6.56043$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2.24·3-s + 4-s − 5-s + 2.24·6-s + 8-s + 2.05·9-s − 10-s + 11-s + 2.24·12-s − 0.941·13-s − 2.24·15-s + 16-s − 6.49·17-s + 2.05·18-s + 4.36·19-s − 20-s + 22-s + 6.24·23-s + 2.24·24-s + 25-s − 0.941·26-s − 2.11·27-s + 8.74·29-s − 2.24·30-s + 9.55·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.29·3-s + 0.5·4-s − 0.447·5-s + 0.918·6-s + 0.353·8-s + 0.686·9-s − 0.316·10-s + 0.301·11-s + 0.649·12-s − 0.261·13-s − 0.580·15-s + 0.250·16-s − 1.57·17-s + 0.485·18-s + 1.00·19-s − 0.223·20-s + 0.213·22-s + 1.30·23-s + 0.459·24-s + 0.200·25-s − 0.184·26-s − 0.407·27-s + 1.62·29-s − 0.410·30-s + 1.71·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5390 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5390 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5390\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(43.0393\)
Root analytic conductor: \(6.56043\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5390} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5390,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.882481918\)
\(L(\frac12)\) \(\approx\) \(4.882481918\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
11 \( 1 - T \)
good3 \( 1 - 2.24T + 3T^{2} \)
13 \( 1 + 0.941T + 13T^{2} \)
17 \( 1 + 6.49T + 17T^{2} \)
19 \( 1 - 4.36T + 19T^{2} \)
23 \( 1 - 6.24T + 23T^{2} \)
29 \( 1 - 8.74T + 29T^{2} \)
31 \( 1 - 9.55T + 31T^{2} \)
37 \( 1 - 4.24T + 37T^{2} \)
41 \( 1 - 2.13T + 41T^{2} \)
43 \( 1 - 7.67T + 43T^{2} \)
47 \( 1 + 11.1T + 47T^{2} \)
53 \( 1 + 4.74T + 53T^{2} \)
59 \( 1 - 1.88T + 59T^{2} \)
61 \( 1 + 9.11T + 61T^{2} \)
67 \( 1 - 12.9T + 67T^{2} \)
71 \( 1 + 14.6T + 71T^{2} \)
73 \( 1 - 10.4T + 73T^{2} \)
79 \( 1 - 8.36T + 79T^{2} \)
83 \( 1 - 8.49T + 83T^{2} \)
89 \( 1 + 12.3T + 89T^{2} \)
97 \( 1 - 15.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.139591372278899378127877206586, −7.52762102327532647863428944216, −6.75343555748148866077345959700, −6.19084444484933008336327684578, −4.83891739821559695214275572489, −4.55790155319195958698252440997, −3.55384649791263313908529668700, −2.88866856823705137334221584494, −2.34683623485023583861874077431, −1.04144439333750347359221370378, 1.04144439333750347359221370378, 2.34683623485023583861874077431, 2.88866856823705137334221584494, 3.55384649791263313908529668700, 4.55790155319195958698252440997, 4.83891739821559695214275572489, 6.19084444484933008336327684578, 6.75343555748148866077345959700, 7.52762102327532647863428944216, 8.139591372278899378127877206586

Graph of the $Z$-function along the critical line