Properties

Label 2-539-1.1-c1-0-21
Degree $2$
Conductor $539$
Sign $-1$
Analytic cond. $4.30393$
Root an. cond. $2.07459$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3-s + 2·4-s − 5-s − 2·6-s − 2·9-s + 2·10-s + 11-s + 2·12-s − 4·13-s − 15-s − 4·16-s + 2·17-s + 4·18-s − 2·20-s − 2·22-s − 23-s − 4·25-s + 8·26-s − 5·27-s + 2·30-s − 7·31-s + 8·32-s + 33-s − 4·34-s − 4·36-s + 3·37-s + ⋯
L(s)  = 1  − 1.41·2-s + 0.577·3-s + 4-s − 0.447·5-s − 0.816·6-s − 2/3·9-s + 0.632·10-s + 0.301·11-s + 0.577·12-s − 1.10·13-s − 0.258·15-s − 16-s + 0.485·17-s + 0.942·18-s − 0.447·20-s − 0.426·22-s − 0.208·23-s − 4/5·25-s + 1.56·26-s − 0.962·27-s + 0.365·30-s − 1.25·31-s + 1.41·32-s + 0.174·33-s − 0.685·34-s − 2/3·36-s + 0.493·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(539\)    =    \(7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(4.30393\)
Root analytic conductor: \(2.07459\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 539,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad7 \( 1 \)
11 \( 1 - T \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 + T + p T^{2} \) 1.5.b
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 5 T + p T^{2} \) 1.59.f
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.03359978338253814456351958606, −9.410787129321073286385580378997, −8.678914216536525529374637909269, −7.77729309499855305690824525396, −7.38142851192821190173908719125, −5.98958560322778025003846316474, −4.56768346065918811492983607197, −3.18179592020545258264561636452, −1.88740391319498359233714309471, 0, 1.88740391319498359233714309471, 3.18179592020545258264561636452, 4.56768346065918811492983607197, 5.98958560322778025003846316474, 7.38142851192821190173908719125, 7.77729309499855305690824525396, 8.678914216536525529374637909269, 9.410787129321073286385580378997, 10.03359978338253814456351958606

Graph of the $Z$-function along the critical line