Properties

Label 2-539-1.1-c1-0-15
Degree $2$
Conductor $539$
Sign $1$
Analytic cond. $4.30393$
Root an. cond. $2.07459$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 2·4-s + 5-s + 6·9-s − 11-s − 6·12-s + 4·13-s + 3·15-s + 4·16-s − 2·17-s + 6·19-s − 2·20-s − 5·23-s − 4·25-s + 9·27-s + 10·29-s − 31-s − 3·33-s − 12·36-s − 5·37-s + 12·39-s + 2·41-s − 8·43-s + 2·44-s + 6·45-s − 8·47-s + 12·48-s + ⋯
L(s)  = 1  + 1.73·3-s − 4-s + 0.447·5-s + 2·9-s − 0.301·11-s − 1.73·12-s + 1.10·13-s + 0.774·15-s + 16-s − 0.485·17-s + 1.37·19-s − 0.447·20-s − 1.04·23-s − 4/5·25-s + 1.73·27-s + 1.85·29-s − 0.179·31-s − 0.522·33-s − 2·36-s − 0.821·37-s + 1.92·39-s + 0.312·41-s − 1.21·43-s + 0.301·44-s + 0.894·45-s − 1.16·47-s + 1.73·48-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(539\)    =    \(7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(4.30393\)
Root analytic conductor: \(2.07459\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 539,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.278607672\)
\(L(\frac12)\) \(\approx\) \(2.278607672\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad7 \( 1 \)
11 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
3 \( 1 - p T + p T^{2} \) 1.3.ad
5 \( 1 - T + p T^{2} \) 1.5.ab
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.29316588242584326072512226536, −9.771899647357342277831560950090, −8.947549675853731093244887653421, −8.333198695137771254103563674887, −7.66866498238269472650919646245, −6.27653205655726142636171995192, −4.95399628290113050953278162390, −3.85266175099960933742282200478, −3.04533793513601036750822233008, −1.58751343454368774869669820755, 1.58751343454368774869669820755, 3.04533793513601036750822233008, 3.85266175099960933742282200478, 4.95399628290113050953278162390, 6.27653205655726142636171995192, 7.66866498238269472650919646245, 8.333198695137771254103563674887, 8.947549675853731093244887653421, 9.771899647357342277831560950090, 10.29316588242584326072512226536

Graph of the $Z$-function along the critical line