L(s) = 1 | + (0.186 + 0.982i)2-s + (−2.31 + 0.0543i)3-s + (−0.930 + 0.366i)4-s + (−0.224 + 0.850i)5-s + (−0.485 − 2.26i)6-s + (−1.08 − 2.42i)7-s + (−0.533 − 0.845i)8-s + (2.36 − 0.111i)9-s + (−0.877 − 0.0618i)10-s + (2.35 + 2.64i)11-s + (2.13 − 0.899i)12-s + (0.370 − 5.25i)13-s + (2.18 − 1.52i)14-s + (0.473 − 1.98i)15-s + (0.731 − 0.681i)16-s + (−3.40 − 3.02i)17-s + ⋯ |
L(s) = 1 | + (0.131 + 0.694i)2-s + (−1.33 + 0.0313i)3-s + (−0.465 + 0.183i)4-s + (−0.100 + 0.380i)5-s + (−0.198 − 0.925i)6-s + (−0.411 − 0.917i)7-s + (−0.188 − 0.299i)8-s + (0.789 − 0.0370i)9-s + (−0.277 − 0.0195i)10-s + (0.709 + 0.797i)11-s + (0.616 − 0.259i)12-s + (0.102 − 1.45i)13-s + (0.582 − 0.407i)14-s + (0.122 − 0.511i)15-s + (0.182 − 0.170i)16-s + (−0.825 − 0.734i)17-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)(0.937−0.348i)Λ(2−s)
Λ(s)=(=(538s/2ΓC(s+1/2)L(s)(0.937−0.348i)Λ(1−s)
Degree: |
2 |
Conductor: |
538
= 2⋅269
|
Sign: |
0.937−0.348i
|
Analytic conductor: |
4.29595 |
Root analytic conductor: |
2.07266 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ538(191,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 538, ( :1/2), 0.937−0.348i)
|
Particular Values
L(1) |
≈ |
0.809343+0.145539i |
L(21) |
≈ |
0.809343+0.145539i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.186−0.982i)T |
| 269 | 1+(15.4−5.47i)T |
good | 3 | 1+(2.31−0.0543i)T+(2.99−0.140i)T2 |
| 5 | 1+(0.224−0.850i)T+(−4.34−2.46i)T2 |
| 7 | 1+(1.08+2.42i)T+(−4.65+5.23i)T2 |
| 11 | 1+(−2.35−2.64i)T+(−1.28+10.9i)T2 |
| 13 | 1+(−0.370+5.25i)T+(−12.8−1.82i)T2 |
| 17 | 1+(3.40+3.02i)T+(1.98+16.8i)T2 |
| 19 | 1+(−4.24−2.81i)T+(7.37+17.5i)T2 |
| 23 | 1+(−0.134−5.73i)T+(−22.9+1.07i)T2 |
| 29 | 1+(0.938+1.65i)T+(−14.8+24.8i)T2 |
| 31 | 1+(−9.45−1.11i)T+(30.1+7.20i)T2 |
| 37 | 1+(−4.91+9.15i)T+(−20.4−30.8i)T2 |
| 41 | 1+(3.18+0.604i)T+(38.1+15.0i)T2 |
| 43 | 1+(−3.84+2.18i)T+(22.0−36.8i)T2 |
| 47 | 1+(3.58+1.03i)T+(39.7+25.0i)T2 |
| 53 | 1+(−5.51−7.51i)T+(−15.9+50.5i)T2 |
| 59 | 1+(−0.291−0.741i)T+(−43.1+40.2i)T2 |
| 61 | 1+(5.14+6.36i)T+(−12.7+59.6i)T2 |
| 67 | 1+(9.93+3.91i)T+(49.0+45.6i)T2 |
| 71 | 1+(−6.15+8.80i)T+(−24.4−66.6i)T2 |
| 73 | 1+(−1.69+4.62i)T+(−55.6−47.2i)T2 |
| 79 | 1+(−10.5−8.12i)T+(20.1+76.3i)T2 |
| 83 | 1+(0.492+5.24i)T+(−81.5+15.4i)T2 |
| 89 | 1+(0.360+2.17i)T+(−84.2+28.6i)T2 |
| 97 | 1+(3.09−3.82i)T+(−20.3−94.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.83340818191169550747075380964, −10.12540639165366927930994002441, −9.268560249097454237593635163216, −7.71590368390540616524944364146, −7.13020118240413045475435688325, −6.29600695688783146403870646369, −5.43591584417629777389896863747, −4.50144446621961414284731396104, −3.31456990063129898345879765095, −0.74501494333988854069203815394,
1.02109374203441172486044433140, 2.71286033652376579619764961399, 4.28586965716443235187510905871, 5.02157907412717997624765965637, 6.31824728665021883231346273349, 6.49782390309122493345170206128, 8.540242371888770456365351151518, 9.027678717277635103882505020338, 10.08753942311236449225746424034, 11.11631415700135932182268949323