Properties

Label 2-538-269.191-c1-0-13
Degree $2$
Conductor $538$
Sign $0.837 + 0.546i$
Analytic cond. $4.29595$
Root an. cond. $2.07266$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.186 − 0.982i)2-s + (2.60 − 0.0610i)3-s + (−0.930 + 0.366i)4-s + (0.0581 − 0.220i)5-s + (−0.545 − 2.54i)6-s + (2.03 + 4.54i)7-s + (0.533 + 0.845i)8-s + (3.77 − 0.177i)9-s + (−0.227 − 0.0160i)10-s + (−3.64 − 4.09i)11-s + (−2.40 + 1.01i)12-s + (0.357 − 5.07i)13-s + (4.08 − 2.85i)14-s + (0.137 − 0.577i)15-s + (0.731 − 0.681i)16-s + (5.65 + 5.02i)17-s + ⋯
L(s)  = 1  + (−0.131 − 0.694i)2-s + (1.50 − 0.0352i)3-s + (−0.465 + 0.183i)4-s + (0.0259 − 0.0985i)5-s + (−0.222 − 1.03i)6-s + (0.770 + 1.71i)7-s + (0.188 + 0.299i)8-s + (1.25 − 0.0590i)9-s + (−0.0719 − 0.00506i)10-s + (−1.09 − 1.23i)11-s + (−0.692 + 0.291i)12-s + (0.0990 − 1.40i)13-s + (1.09 − 0.761i)14-s + (0.0356 − 0.149i)15-s + (0.182 − 0.170i)16-s + (1.37 + 1.21i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.837 + 0.546i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.837 + 0.546i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $0.837 + 0.546i$
Analytic conductor: \(4.29595\)
Root analytic conductor: \(2.07266\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{538} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 538,\ (\ :1/2),\ 0.837 + 0.546i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.12664 - 0.632675i\)
\(L(\frac12)\) \(\approx\) \(2.12664 - 0.632675i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.186 + 0.982i)T \)
269 \( 1 + (-13.5 - 9.17i)T \)
good3 \( 1 + (-2.60 + 0.0610i)T + (2.99 - 0.140i)T^{2} \)
5 \( 1 + (-0.0581 + 0.220i)T + (-4.34 - 2.46i)T^{2} \)
7 \( 1 + (-2.03 - 4.54i)T + (-4.65 + 5.23i)T^{2} \)
11 \( 1 + (3.64 + 4.09i)T + (-1.28 + 10.9i)T^{2} \)
13 \( 1 + (-0.357 + 5.07i)T + (-12.8 - 1.82i)T^{2} \)
17 \( 1 + (-5.65 - 5.02i)T + (1.98 + 16.8i)T^{2} \)
19 \( 1 + (-2.17 - 1.44i)T + (7.37 + 17.5i)T^{2} \)
23 \( 1 + (0.0595 + 2.54i)T + (-22.9 + 1.07i)T^{2} \)
29 \( 1 + (1.19 + 2.11i)T + (-14.8 + 24.8i)T^{2} \)
31 \( 1 + (-3.77 - 0.445i)T + (30.1 + 7.20i)T^{2} \)
37 \( 1 + (3.66 - 6.83i)T + (-20.4 - 30.8i)T^{2} \)
41 \( 1 + (6.87 + 1.30i)T + (38.1 + 15.0i)T^{2} \)
43 \( 1 + (-2.98 + 1.69i)T + (22.0 - 36.8i)T^{2} \)
47 \( 1 + (9.52 + 2.75i)T + (39.7 + 25.0i)T^{2} \)
53 \( 1 + (5.16 + 7.04i)T + (-15.9 + 50.5i)T^{2} \)
59 \( 1 + (0.0826 + 0.209i)T + (-43.1 + 40.2i)T^{2} \)
61 \( 1 + (3.69 + 4.56i)T + (-12.7 + 59.6i)T^{2} \)
67 \( 1 + (4.98 + 1.96i)T + (49.0 + 45.6i)T^{2} \)
71 \( 1 + (2.74 - 3.93i)T + (-24.4 - 66.6i)T^{2} \)
73 \( 1 + (2.57 - 7.03i)T + (-55.6 - 47.2i)T^{2} \)
79 \( 1 + (12.8 + 9.86i)T + (20.1 + 76.3i)T^{2} \)
83 \( 1 + (-0.0249 - 0.265i)T + (-81.5 + 15.4i)T^{2} \)
89 \( 1 + (-2.54 - 15.3i)T + (-84.2 + 28.6i)T^{2} \)
97 \( 1 + (-4.81 + 5.94i)T + (-20.3 - 94.8i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.57430278102301203550662515892, −9.844178075047552226089086737445, −8.670428294754028116536418642694, −8.234508053813951231870698265782, −7.985606277205071590804415695245, −5.79252218678074681499777909690, −5.13465098095242025706639940698, −3.18903249976758965491158255067, −3.00263538881983016583255022324, −1.65664510616724219013248683941, 1.55697267392664324392981868514, 3.09767211729463070235768953733, 4.32914289266238749647128909573, 4.97473468462238770467261441417, 6.97906597775417665858623728866, 7.45666886987680683063095131197, 7.917035725661495681054335807769, 9.092050226004085855891539991975, 9.824111993791754033916288459455, 10.48934499786636120060919263854

Graph of the $Z$-function along the critical line