L(s) = 1 | + (−0.186 − 0.982i)2-s + (2.60 − 0.0610i)3-s + (−0.930 + 0.366i)4-s + (0.0581 − 0.220i)5-s + (−0.545 − 2.54i)6-s + (2.03 + 4.54i)7-s + (0.533 + 0.845i)8-s + (3.77 − 0.177i)9-s + (−0.227 − 0.0160i)10-s + (−3.64 − 4.09i)11-s + (−2.40 + 1.01i)12-s + (0.357 − 5.07i)13-s + (4.08 − 2.85i)14-s + (0.137 − 0.577i)15-s + (0.731 − 0.681i)16-s + (5.65 + 5.02i)17-s + ⋯ |
L(s) = 1 | + (−0.131 − 0.694i)2-s + (1.50 − 0.0352i)3-s + (−0.465 + 0.183i)4-s + (0.0259 − 0.0985i)5-s + (−0.222 − 1.03i)6-s + (0.770 + 1.71i)7-s + (0.188 + 0.299i)8-s + (1.25 − 0.0590i)9-s + (−0.0719 − 0.00506i)10-s + (−1.09 − 1.23i)11-s + (−0.692 + 0.291i)12-s + (0.0990 − 1.40i)13-s + (1.09 − 0.761i)14-s + (0.0356 − 0.149i)15-s + (0.182 − 0.170i)16-s + (1.37 + 1.21i)17-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)(0.837+0.546i)Λ(2−s)
Λ(s)=(=(538s/2ΓC(s+1/2)L(s)(0.837+0.546i)Λ(1−s)
Degree: |
2 |
Conductor: |
538
= 2⋅269
|
Sign: |
0.837+0.546i
|
Analytic conductor: |
4.29595 |
Root analytic conductor: |
2.07266 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ538(191,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 538, ( :1/2), 0.837+0.546i)
|
Particular Values
L(1) |
≈ |
2.12664−0.632675i |
L(21) |
≈ |
2.12664−0.632675i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.186+0.982i)T |
| 269 | 1+(−13.5−9.17i)T |
good | 3 | 1+(−2.60+0.0610i)T+(2.99−0.140i)T2 |
| 5 | 1+(−0.0581+0.220i)T+(−4.34−2.46i)T2 |
| 7 | 1+(−2.03−4.54i)T+(−4.65+5.23i)T2 |
| 11 | 1+(3.64+4.09i)T+(−1.28+10.9i)T2 |
| 13 | 1+(−0.357+5.07i)T+(−12.8−1.82i)T2 |
| 17 | 1+(−5.65−5.02i)T+(1.98+16.8i)T2 |
| 19 | 1+(−2.17−1.44i)T+(7.37+17.5i)T2 |
| 23 | 1+(0.0595+2.54i)T+(−22.9+1.07i)T2 |
| 29 | 1+(1.19+2.11i)T+(−14.8+24.8i)T2 |
| 31 | 1+(−3.77−0.445i)T+(30.1+7.20i)T2 |
| 37 | 1+(3.66−6.83i)T+(−20.4−30.8i)T2 |
| 41 | 1+(6.87+1.30i)T+(38.1+15.0i)T2 |
| 43 | 1+(−2.98+1.69i)T+(22.0−36.8i)T2 |
| 47 | 1+(9.52+2.75i)T+(39.7+25.0i)T2 |
| 53 | 1+(5.16+7.04i)T+(−15.9+50.5i)T2 |
| 59 | 1+(0.0826+0.209i)T+(−43.1+40.2i)T2 |
| 61 | 1+(3.69+4.56i)T+(−12.7+59.6i)T2 |
| 67 | 1+(4.98+1.96i)T+(49.0+45.6i)T2 |
| 71 | 1+(2.74−3.93i)T+(−24.4−66.6i)T2 |
| 73 | 1+(2.57−7.03i)T+(−55.6−47.2i)T2 |
| 79 | 1+(12.8+9.86i)T+(20.1+76.3i)T2 |
| 83 | 1+(−0.0249−0.265i)T+(−81.5+15.4i)T2 |
| 89 | 1+(−2.54−15.3i)T+(−84.2+28.6i)T2 |
| 97 | 1+(−4.81+5.94i)T+(−20.3−94.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.57430278102301203550662515892, −9.844178075047552226089086737445, −8.670428294754028116536418642694, −8.234508053813951231870698265782, −7.985606277205071590804415695245, −5.79252218678074681499777909690, −5.13465098095242025706639940698, −3.18903249976758965491158255067, −3.00263538881983016583255022324, −1.65664510616724219013248683941,
1.55697267392664324392981868514, 3.09767211729463070235768953733, 4.32914289266238749647128909573, 4.97473468462238770467261441417, 6.97906597775417665858623728866, 7.45666886987680683063095131197, 7.917035725661495681054335807769, 9.092050226004085855891539991975, 9.824111993791754033916288459455, 10.48934499786636120060919263854