L(s) = 1 | + (−0.186 + 0.982i)2-s + (0.932 + 0.0218i)3-s + (−0.930 − 0.366i)4-s + (0.272 + 1.03i)5-s + (−0.195 + 0.912i)6-s + (1.94 − 4.33i)7-s + (0.533 − 0.845i)8-s + (−2.12 − 0.0998i)9-s + (−1.06 + 0.0752i)10-s + (3.06 − 3.44i)11-s + (−0.860 − 0.362i)12-s + (−0.431 − 6.12i)13-s + (3.89 + 2.72i)14-s + (0.232 + 0.971i)15-s + (0.731 + 0.681i)16-s + (−3.31 + 2.94i)17-s + ⋯ |
L(s) = 1 | + (−0.131 + 0.694i)2-s + (0.538 + 0.0126i)3-s + (−0.465 − 0.183i)4-s + (0.122 + 0.462i)5-s + (−0.0797 + 0.372i)6-s + (0.735 − 1.63i)7-s + (0.188 − 0.299i)8-s + (−0.708 − 0.0332i)9-s + (−0.337 + 0.0237i)10-s + (0.922 − 1.03i)11-s + (−0.248 − 0.104i)12-s + (−0.119 − 1.69i)13-s + (1.04 + 0.727i)14-s + (0.0599 + 0.250i)15-s + (0.182 + 0.170i)16-s + (−0.802 + 0.713i)17-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)(0.973+0.229i)Λ(2−s)
Λ(s)=(=(538s/2ΓC(s+1/2)L(s)(0.973+0.229i)Λ(1−s)
Degree: |
2 |
Conductor: |
538
= 2⋅269
|
Sign: |
0.973+0.229i
|
Analytic conductor: |
4.29595 |
Root analytic conductor: |
2.07266 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ538(369,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 538, ( :1/2), 0.973+0.229i)
|
Particular Values
L(1) |
≈ |
1.55797−0.181133i |
L(21) |
≈ |
1.55797−0.181133i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.186−0.982i)T |
| 269 | 1+(−16.0−3.51i)T |
good | 3 | 1+(−0.932−0.0218i)T+(2.99+0.140i)T2 |
| 5 | 1+(−0.272−1.03i)T+(−4.34+2.46i)T2 |
| 7 | 1+(−1.94+4.33i)T+(−4.65−5.23i)T2 |
| 11 | 1+(−3.06+3.44i)T+(−1.28−10.9i)T2 |
| 13 | 1+(0.431+6.12i)T+(−12.8+1.82i)T2 |
| 17 | 1+(3.31−2.94i)T+(1.98−16.8i)T2 |
| 19 | 1+(−1.25+0.831i)T+(7.37−17.5i)T2 |
| 23 | 1+(0.0343−1.46i)T+(−22.9−1.07i)T2 |
| 29 | 1+(4.24−7.48i)T+(−14.8−24.8i)T2 |
| 31 | 1+(−3.16+0.372i)T+(30.1−7.20i)T2 |
| 37 | 1+(−3.72−6.95i)T+(−20.4+30.8i)T2 |
| 41 | 1+(1.94−0.368i)T+(38.1−15.0i)T2 |
| 43 | 1+(−2.13−1.21i)T+(22.0+36.8i)T2 |
| 47 | 1+(−9.96+2.87i)T+(39.7−25.0i)T2 |
| 53 | 1+(5.13−7.00i)T+(−15.9−50.5i)T2 |
| 59 | 1+(−1.32+3.36i)T+(−43.1−40.2i)T2 |
| 61 | 1+(−5.85+7.23i)T+(−12.7−59.6i)T2 |
| 67 | 1+(2.45−0.966i)T+(49.0−45.6i)T2 |
| 71 | 1+(−3.25−4.66i)T+(−24.4+66.6i)T2 |
| 73 | 1+(−3.48−9.49i)T+(−55.6+47.2i)T2 |
| 79 | 1+(2.89−2.22i)T+(20.1−76.3i)T2 |
| 83 | 1+(1.59−16.9i)T+(−81.5−15.4i)T2 |
| 89 | 1+(−1.09+6.60i)T+(−84.2−28.6i)T2 |
| 97 | 1+(−0.866−1.07i)T+(−20.3+94.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.84885147835766412937316808385, −9.896014843895020532362659384752, −8.662602886100140163300788377982, −8.154696757542749368890199779753, −7.27529428921014756817024427639, −6.36668631939220063324033012079, −5.30207440443958534585414153450, −3.99842176828936225943741763163, −3.09438439911888905429143912854, −0.969064439609761032719147990020,
1.91111587342730472084300820732, 2.45434203971192553439981055752, 4.15742498510686828762704133521, 4.98951943434619601423406850163, 6.15547444704976669579265884475, 7.49130305566079557105451755453, 8.702844788240429849466397082896, 9.116663730968845359093888466719, 9.513581416904266318058227832198, 11.20115283761584145284936982606