Properties

Label 2-538-1.1-c1-0-21
Degree $2$
Conductor $538$
Sign $-1$
Analytic cond. $4.29595$
Root an. cond. $2.07266$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 0.618·3-s + 4-s − 3.61·5-s + 0.618·6-s − 4.23·7-s + 8-s − 2.61·9-s − 3.61·10-s + 0.236·11-s + 0.618·12-s − 13-s − 4.23·14-s − 2.23·15-s + 16-s + 0.236·17-s − 2.61·18-s + 2·19-s − 3.61·20-s − 2.61·21-s + 0.236·22-s − 8.23·23-s + 0.618·24-s + 8.09·25-s − 26-s − 3.47·27-s − 4.23·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.356·3-s + 0.5·4-s − 1.61·5-s + 0.252·6-s − 1.60·7-s + 0.353·8-s − 0.872·9-s − 1.14·10-s + 0.0711·11-s + 0.178·12-s − 0.277·13-s − 1.13·14-s − 0.577·15-s + 0.250·16-s + 0.0572·17-s − 0.617·18-s + 0.458·19-s − 0.809·20-s − 0.571·21-s + 0.0503·22-s − 1.71·23-s + 0.126·24-s + 1.61·25-s − 0.196·26-s − 0.668·27-s − 0.800·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $-1$
Analytic conductor: \(4.29595\)
Root analytic conductor: \(2.07266\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 538,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
269 \( 1 - T \)
good3 \( 1 - 0.618T + 3T^{2} \)
5 \( 1 + 3.61T + 5T^{2} \)
7 \( 1 + 4.23T + 7T^{2} \)
11 \( 1 - 0.236T + 11T^{2} \)
13 \( 1 + T + 13T^{2} \)
17 \( 1 - 0.236T + 17T^{2} \)
19 \( 1 - 2T + 19T^{2} \)
23 \( 1 + 8.23T + 23T^{2} \)
29 \( 1 - 0.854T + 29T^{2} \)
31 \( 1 - 7.47T + 31T^{2} \)
37 \( 1 + 8.70T + 37T^{2} \)
41 \( 1 - 7.70T + 41T^{2} \)
43 \( 1 - 2.23T + 43T^{2} \)
47 \( 1 + 6.85T + 47T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 + 6.56T + 59T^{2} \)
61 \( 1 + 5.47T + 61T^{2} \)
67 \( 1 - 1.76T + 67T^{2} \)
71 \( 1 - 9.70T + 71T^{2} \)
73 \( 1 + 10.7T + 73T^{2} \)
79 \( 1 + 13.7T + 79T^{2} \)
83 \( 1 + 5.23T + 83T^{2} \)
89 \( 1 + 9.79T + 89T^{2} \)
97 \( 1 - 12.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.48423796127544971822527316674, −9.522969433472425107289092431849, −8.409896087057840088796039549985, −7.65757781263824684391871602608, −6.69189875945640086358163731787, −5.78771380616476145548109461474, −4.34816336712005722797211848473, −3.49314352731394953195257893184, −2.81533988877349973915721995346, 0, 2.81533988877349973915721995346, 3.49314352731394953195257893184, 4.34816336712005722797211848473, 5.78771380616476145548109461474, 6.69189875945640086358163731787, 7.65757781263824684391871602608, 8.409896087057840088796039549985, 9.522969433472425107289092431849, 10.48423796127544971822527316674

Graph of the $Z$-function along the critical line