Properties

Label 2-538-1.1-c1-0-2
Degree $2$
Conductor $538$
Sign $1$
Analytic cond. $4.29595$
Root an. cond. $2.07266$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 0.512·3-s + 4-s − 1.04·5-s − 0.512·6-s − 2.90·7-s − 8-s − 2.73·9-s + 1.04·10-s + 2.34·11-s + 0.512·12-s + 4.24·13-s + 2.90·14-s − 0.537·15-s + 16-s + 7.66·17-s + 2.73·18-s + 5.81·19-s − 1.04·20-s − 1.48·21-s − 2.34·22-s + 6.53·23-s − 0.512·24-s − 3.89·25-s − 4.24·26-s − 2.93·27-s − 2.90·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.295·3-s + 0.5·4-s − 0.469·5-s − 0.209·6-s − 1.09·7-s − 0.353·8-s − 0.912·9-s + 0.331·10-s + 0.706·11-s + 0.147·12-s + 1.17·13-s + 0.776·14-s − 0.138·15-s + 0.250·16-s + 1.85·17-s + 0.645·18-s + 1.33·19-s − 0.234·20-s − 0.324·21-s − 0.499·22-s + 1.36·23-s − 0.104·24-s − 0.779·25-s − 0.833·26-s − 0.565·27-s − 0.549·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $1$
Analytic conductor: \(4.29595\)
Root analytic conductor: \(2.07266\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 538,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9976014903\)
\(L(\frac12)\) \(\approx\) \(0.9976014903\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
269 \( 1 - T \)
good3 \( 1 - 0.512T + 3T^{2} \)
5 \( 1 + 1.04T + 5T^{2} \)
7 \( 1 + 2.90T + 7T^{2} \)
11 \( 1 - 2.34T + 11T^{2} \)
13 \( 1 - 4.24T + 13T^{2} \)
17 \( 1 - 7.66T + 17T^{2} \)
19 \( 1 - 5.81T + 19T^{2} \)
23 \( 1 - 6.53T + 23T^{2} \)
29 \( 1 - 0.119T + 29T^{2} \)
31 \( 1 - 3.75T + 31T^{2} \)
37 \( 1 + 3.27T + 37T^{2} \)
41 \( 1 - 4.46T + 41T^{2} \)
43 \( 1 + 3.34T + 43T^{2} \)
47 \( 1 - 2.61T + 47T^{2} \)
53 \( 1 - 2.87T + 53T^{2} \)
59 \( 1 - 0.549T + 59T^{2} \)
61 \( 1 + 8.24T + 61T^{2} \)
67 \( 1 - 1.09T + 67T^{2} \)
71 \( 1 + 8.10T + 71T^{2} \)
73 \( 1 - 9.15T + 73T^{2} \)
79 \( 1 - 0.426T + 79T^{2} \)
83 \( 1 - 7.84T + 83T^{2} \)
89 \( 1 - 15.7T + 89T^{2} \)
97 \( 1 + 14.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.74963236169591012154453595844, −9.694706454794153445319860383700, −9.148427629012751799882000886355, −8.224718373336695943917140103840, −7.41173367901010032285109530688, −6.34434855145336749904464772859, −5.51794890639728733621034819689, −3.56124269324000870517423657380, −3.09831440209376624748036504763, −1.02463146886105758623892274804, 1.02463146886105758623892274804, 3.09831440209376624748036504763, 3.56124269324000870517423657380, 5.51794890639728733621034819689, 6.34434855145336749904464772859, 7.41173367901010032285109530688, 8.224718373336695943917140103840, 9.148427629012751799882000886355, 9.694706454794153445319860383700, 10.74963236169591012154453595844

Graph of the $Z$-function along the critical line