L(s) = 1 | + 2-s − 1.61·3-s + 4-s − 1.38·5-s − 1.61·6-s + 0.236·7-s + 8-s − 0.381·9-s − 1.38·10-s − 4.23·11-s − 1.61·12-s − 13-s + 0.236·14-s + 2.23·15-s + 16-s − 4.23·17-s − 0.381·18-s + 2·19-s − 1.38·20-s − 0.381·21-s − 4.23·22-s − 3.76·23-s − 1.61·24-s − 3.09·25-s − 26-s + 5.47·27-s + 0.236·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.934·3-s + 0.5·4-s − 0.618·5-s − 0.660·6-s + 0.0892·7-s + 0.353·8-s − 0.127·9-s − 0.437·10-s − 1.27·11-s − 0.467·12-s − 0.277·13-s + 0.0630·14-s + 0.577·15-s + 0.250·16-s − 1.02·17-s − 0.0900·18-s + 0.458·19-s − 0.309·20-s − 0.0833·21-s − 0.903·22-s − 0.784·23-s − 0.330·24-s − 0.618·25-s − 0.196·26-s + 1.05·27-s + 0.0446·28-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(538s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 269 | 1−T |
good | 3 | 1+1.61T+3T2 |
| 5 | 1+1.38T+5T2 |
| 7 | 1−0.236T+7T2 |
| 11 | 1+4.23T+11T2 |
| 13 | 1+T+13T2 |
| 17 | 1+4.23T+17T2 |
| 19 | 1−2T+19T2 |
| 23 | 1+3.76T+23T2 |
| 29 | 1+5.85T+29T2 |
| 31 | 1+1.47T+31T2 |
| 37 | 1−4.70T+37T2 |
| 41 | 1+5.70T+41T2 |
| 43 | 1+2.23T+43T2 |
| 47 | 1+0.145T+47T2 |
| 53 | 1+53T2 |
| 59 | 1−13.5T+59T2 |
| 61 | 1−3.47T+61T2 |
| 67 | 1−6.23T+67T2 |
| 71 | 1+3.70T+71T2 |
| 73 | 1−2.70T+73T2 |
| 79 | 1−10.7T+79T2 |
| 83 | 1+0.763T+83T2 |
| 89 | 1−14.7T+89T2 |
| 97 | 1+18.6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.75550022492265920355365148009, −9.779310370633365036992065654641, −8.340542059575305887345664585683, −7.55313253354201825755994795926, −6.52286239153267665937487243535, −5.53522707827406947590541907383, −4.88465287099634814764121847312, −3.72426930725569106217054384489, −2.34630354444356126931490073198, 0,
2.34630354444356126931490073198, 3.72426930725569106217054384489, 4.88465287099634814764121847312, 5.53522707827406947590541907383, 6.52286239153267665937487243535, 7.55313253354201825755994795926, 8.340542059575305887345664585683, 9.779310370633365036992065654641, 10.75550022492265920355365148009