Properties

Label 2-538-1.1-c1-0-13
Degree $2$
Conductor $538$
Sign $1$
Analytic cond. $4.29595$
Root an. cond. $2.07266$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 0.383·3-s + 4-s + 4.15·5-s − 0.383·6-s + 4.87·7-s + 8-s − 2.85·9-s + 4.15·10-s − 1.62·11-s − 0.383·12-s − 2.16·13-s + 4.87·14-s − 1.59·15-s + 16-s − 6.78·17-s − 2.85·18-s − 8.61·19-s + 4.15·20-s − 1.87·21-s − 1.62·22-s + 2.76·23-s − 0.383·24-s + 12.2·25-s − 2.16·26-s + 2.24·27-s + 4.87·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.221·3-s + 0.5·4-s + 1.85·5-s − 0.156·6-s + 1.84·7-s + 0.353·8-s − 0.950·9-s + 1.31·10-s − 0.491·11-s − 0.110·12-s − 0.600·13-s + 1.30·14-s − 0.411·15-s + 0.250·16-s − 1.64·17-s − 0.672·18-s − 1.97·19-s + 0.928·20-s − 0.408·21-s − 0.347·22-s + 0.577·23-s − 0.0783·24-s + 2.45·25-s − 0.424·26-s + 0.432·27-s + 0.921·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $1$
Analytic conductor: \(4.29595\)
Root analytic conductor: \(2.07266\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 538,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.777535167\)
\(L(\frac12)\) \(\approx\) \(2.777535167\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
269 \( 1 + T \)
good3 \( 1 + 0.383T + 3T^{2} \)
5 \( 1 - 4.15T + 5T^{2} \)
7 \( 1 - 4.87T + 7T^{2} \)
11 \( 1 + 1.62T + 11T^{2} \)
13 \( 1 + 2.16T + 13T^{2} \)
17 \( 1 + 6.78T + 17T^{2} \)
19 \( 1 + 8.61T + 19T^{2} \)
23 \( 1 - 2.76T + 23T^{2} \)
29 \( 1 - 2.10T + 29T^{2} \)
31 \( 1 + 3.62T + 31T^{2} \)
37 \( 1 - 1.19T + 37T^{2} \)
41 \( 1 - 5.43T + 41T^{2} \)
43 \( 1 + 9.63T + 43T^{2} \)
47 \( 1 + 7.07T + 47T^{2} \)
53 \( 1 + 3.03T + 53T^{2} \)
59 \( 1 - 4.21T + 59T^{2} \)
61 \( 1 - 8.74T + 61T^{2} \)
67 \( 1 + 1.50T + 67T^{2} \)
71 \( 1 - 11.0T + 71T^{2} \)
73 \( 1 - 1.37T + 73T^{2} \)
79 \( 1 + 14.9T + 79T^{2} \)
83 \( 1 + 8.08T + 83T^{2} \)
89 \( 1 - 3.31T + 89T^{2} \)
97 \( 1 - 16.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.96853357505313360109238534113, −10.25473670523262595464780038854, −8.906953193488809951513603862854, −8.322390217729559574222891389775, −6.84614362028388658680482440779, −6.02621463315702238041053301608, −5.11012022115790680600725507479, −4.64347787242201747222359179862, −2.44668178923068732859400018018, −1.94268810267652616400949731135, 1.94268810267652616400949731135, 2.44668178923068732859400018018, 4.64347787242201747222359179862, 5.11012022115790680600725507479, 6.02621463315702238041053301608, 6.84614362028388658680482440779, 8.322390217729559574222891389775, 8.906953193488809951513603862854, 10.25473670523262595464780038854, 10.96853357505313360109238534113

Graph of the $Z$-function along the critical line