Properties

Label 2-538-1.1-c1-0-11
Degree $2$
Conductor $538$
Sign $1$
Analytic cond. $4.29595$
Root an. cond. $2.07266$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2.30·3-s + 4-s − 1.30·5-s + 2.30·6-s − 7-s + 8-s + 2.30·9-s − 1.30·10-s + 3·11-s + 2.30·12-s + 5·13-s − 14-s − 3·15-s + 16-s − 5.60·17-s + 2.30·18-s + 2·19-s − 1.30·20-s − 2.30·21-s + 3·22-s + 8.21·23-s + 2.30·24-s − 3.30·25-s + 5·26-s − 1.60·27-s − 28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.32·3-s + 0.5·4-s − 0.582·5-s + 0.940·6-s − 0.377·7-s + 0.353·8-s + 0.767·9-s − 0.411·10-s + 0.904·11-s + 0.664·12-s + 1.38·13-s − 0.267·14-s − 0.774·15-s + 0.250·16-s − 1.35·17-s + 0.542·18-s + 0.458·19-s − 0.291·20-s − 0.502·21-s + 0.639·22-s + 1.71·23-s + 0.470·24-s − 0.660·25-s + 0.980·26-s − 0.308·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $1$
Analytic conductor: \(4.29595\)
Root analytic conductor: \(2.07266\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 538,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.041515424\)
\(L(\frac12)\) \(\approx\) \(3.041515424\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
269 \( 1 + T \)
good3 \( 1 - 2.30T + 3T^{2} \)
5 \( 1 + 1.30T + 5T^{2} \)
7 \( 1 + T + 7T^{2} \)
11 \( 1 - 3T + 11T^{2} \)
13 \( 1 - 5T + 13T^{2} \)
17 \( 1 + 5.60T + 17T^{2} \)
19 \( 1 - 2T + 19T^{2} \)
23 \( 1 - 8.21T + 23T^{2} \)
29 \( 1 - 4.69T + 29T^{2} \)
31 \( 1 + 9.60T + 31T^{2} \)
37 \( 1 + 3.60T + 37T^{2} \)
41 \( 1 + 8.60T + 41T^{2} \)
43 \( 1 + 12.2T + 43T^{2} \)
47 \( 1 + 9.90T + 47T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 - 6.51T + 59T^{2} \)
61 \( 1 + T + 61T^{2} \)
67 \( 1 - 16.2T + 67T^{2} \)
71 \( 1 - 7.81T + 71T^{2} \)
73 \( 1 + 3.60T + 73T^{2} \)
79 \( 1 + 2.69T + 79T^{2} \)
83 \( 1 - 8.60T + 83T^{2} \)
89 \( 1 + 7.30T + 89T^{2} \)
97 \( 1 - 4.60T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.14746901950943647195748594240, −9.776204173864185958574316016086, −8.801734598099893482141580861158, −8.370356655563098782338215071683, −7.08655305238369845374278922641, −6.45769168146058318023883440281, −4.94760952852127934613324027835, −3.62739899889701253609734948047, −3.37919496802167730530231627105, −1.79846874068588125902600475991, 1.79846874068588125902600475991, 3.37919496802167730530231627105, 3.62739899889701253609734948047, 4.94760952852127934613324027835, 6.45769168146058318023883440281, 7.08655305238369845374278922641, 8.370356655563098782338215071683, 8.801734598099893482141580861158, 9.776204173864185958574316016086, 11.14746901950943647195748594240

Graph of the $Z$-function along the critical line