Properties

Label 2-538-1.1-c1-0-10
Degree $2$
Conductor $538$
Sign $-1$
Analytic cond. $4.29595$
Root an. cond. $2.07266$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 1.20·3-s + 4-s − 2.40·5-s + 1.20·6-s + 1.52·7-s − 8-s − 1.53·9-s + 2.40·10-s + 5.07·11-s − 1.20·12-s + 5.11·13-s − 1.52·14-s + 2.90·15-s + 16-s − 6.65·17-s + 1.53·18-s − 5.71·19-s − 2.40·20-s − 1.83·21-s − 5.07·22-s − 6.36·23-s + 1.20·24-s + 0.775·25-s − 5.11·26-s + 5.48·27-s + 1.52·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.698·3-s + 0.5·4-s − 1.07·5-s + 0.493·6-s + 0.574·7-s − 0.353·8-s − 0.512·9-s + 0.759·10-s + 1.53·11-s − 0.349·12-s + 1.41·13-s − 0.406·14-s + 0.750·15-s + 0.250·16-s − 1.61·17-s + 0.362·18-s − 1.31·19-s − 0.537·20-s − 0.401·21-s − 1.08·22-s − 1.32·23-s + 0.246·24-s + 0.155·25-s − 1.00·26-s + 1.05·27-s + 0.287·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $-1$
Analytic conductor: \(4.29595\)
Root analytic conductor: \(2.07266\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 538,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
269 \( 1 + T \)
good3 \( 1 + 1.20T + 3T^{2} \)
5 \( 1 + 2.40T + 5T^{2} \)
7 \( 1 - 1.52T + 7T^{2} \)
11 \( 1 - 5.07T + 11T^{2} \)
13 \( 1 - 5.11T + 13T^{2} \)
17 \( 1 + 6.65T + 17T^{2} \)
19 \( 1 + 5.71T + 19T^{2} \)
23 \( 1 + 6.36T + 23T^{2} \)
29 \( 1 + 6.00T + 29T^{2} \)
31 \( 1 - 2.77T + 31T^{2} \)
37 \( 1 + 1.59T + 37T^{2} \)
41 \( 1 - 9.69T + 41T^{2} \)
43 \( 1 + 9.26T + 43T^{2} \)
47 \( 1 + 7.55T + 47T^{2} \)
53 \( 1 + 9.42T + 53T^{2} \)
59 \( 1 + 6.31T + 59T^{2} \)
61 \( 1 + 7.97T + 61T^{2} \)
67 \( 1 + 2.54T + 67T^{2} \)
71 \( 1 - 1.98T + 71T^{2} \)
73 \( 1 - 12.7T + 73T^{2} \)
79 \( 1 - 3.64T + 79T^{2} \)
83 \( 1 + 0.689T + 83T^{2} \)
89 \( 1 - 2.78T + 89T^{2} \)
97 \( 1 - 11.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.79625730401112495255288429623, −9.295773356753417131919694234028, −8.525830032222663084453420913201, −7.968556319775287584944784928019, −6.50590437742635495620363041277, −6.22355367298792117880628564973, −4.51149399269630591623552569426, −3.69649642647639065917736726946, −1.73496624976198570446485413223, 0, 1.73496624976198570446485413223, 3.69649642647639065917736726946, 4.51149399269630591623552569426, 6.22355367298792117880628564973, 6.50590437742635495620363041277, 7.968556319775287584944784928019, 8.525830032222663084453420913201, 9.295773356753417131919694234028, 10.79625730401112495255288429623

Graph of the $Z$-function along the critical line