Properties

Label 2-538-1.1-c1-0-1
Degree $2$
Conductor $538$
Sign $1$
Analytic cond. $4.29595$
Root an. cond. $2.07266$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 1.90·3-s + 4-s + 0.655·5-s + 1.90·6-s + 2.04·7-s − 8-s + 0.631·9-s − 0.655·10-s + 1.51·11-s − 1.90·12-s − 1.53·13-s − 2.04·14-s − 1.24·15-s + 16-s + 0.126·17-s − 0.631·18-s − 4.09·19-s + 0.655·20-s − 3.90·21-s − 1.51·22-s + 7.24·23-s + 1.90·24-s − 4.56·25-s + 1.53·26-s + 4.51·27-s + 2.04·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.10·3-s + 0.5·4-s + 0.293·5-s + 0.778·6-s + 0.774·7-s − 0.353·8-s + 0.210·9-s − 0.207·10-s + 0.455·11-s − 0.550·12-s − 0.426·13-s − 0.547·14-s − 0.322·15-s + 0.250·16-s + 0.0307·17-s − 0.148·18-s − 0.940·19-s + 0.146·20-s − 0.852·21-s − 0.322·22-s + 1.51·23-s + 0.389·24-s − 0.913·25-s + 0.301·26-s + 0.868·27-s + 0.387·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $1$
Analytic conductor: \(4.29595\)
Root analytic conductor: \(2.07266\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 538,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7891243366\)
\(L(\frac12)\) \(\approx\) \(0.7891243366\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
269 \( 1 - T \)
good3 \( 1 + 1.90T + 3T^{2} \)
5 \( 1 - 0.655T + 5T^{2} \)
7 \( 1 - 2.04T + 7T^{2} \)
11 \( 1 - 1.51T + 11T^{2} \)
13 \( 1 + 1.53T + 13T^{2} \)
17 \( 1 - 0.126T + 17T^{2} \)
19 \( 1 + 4.09T + 19T^{2} \)
23 \( 1 - 7.24T + 23T^{2} \)
29 \( 1 - 8.20T + 29T^{2} \)
31 \( 1 - 1.17T + 31T^{2} \)
37 \( 1 - 7.34T + 37T^{2} \)
41 \( 1 + 4.61T + 41T^{2} \)
43 \( 1 - 8.19T + 43T^{2} \)
47 \( 1 - 7.49T + 47T^{2} \)
53 \( 1 - 11.1T + 53T^{2} \)
59 \( 1 - 10.4T + 59T^{2} \)
61 \( 1 + 2.46T + 61T^{2} \)
67 \( 1 - 6.04T + 67T^{2} \)
71 \( 1 - 3.67T + 71T^{2} \)
73 \( 1 + 12.2T + 73T^{2} \)
79 \( 1 + 4.60T + 79T^{2} \)
83 \( 1 + 0.483T + 83T^{2} \)
89 \( 1 - 4.00T + 89T^{2} \)
97 \( 1 - 13.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.81331985073455630587419777216, −10.14087037249222735043670250416, −9.048599452245478761455112207660, −8.254601961328409481467015797144, −7.12031803104349283703542709383, −6.29566517806229637454684326185, −5.38603252494588016042016578685, −4.38730406642955465156931706862, −2.50292005003226576854470258159, −0.963312960833360907707787015655, 0.963312960833360907707787015655, 2.50292005003226576854470258159, 4.38730406642955465156931706862, 5.38603252494588016042016578685, 6.29566517806229637454684326185, 7.12031803104349283703542709383, 8.254601961328409481467015797144, 9.048599452245478761455112207660, 10.14087037249222735043670250416, 10.81331985073455630587419777216

Graph of the $Z$-function along the critical line