Properties

Label 2-538-1.1-c1-0-0
Degree $2$
Conductor $538$
Sign $1$
Analytic cond. $4.29595$
Root an. cond. $2.07266$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2.60·3-s + 4-s − 3.80·5-s − 2.60·6-s + 0.487·7-s + 8-s + 3.76·9-s − 3.80·10-s + 2.94·11-s − 2.60·12-s + 1.21·13-s + 0.487·14-s + 9.90·15-s + 16-s + 3.19·17-s + 3.76·18-s − 2.02·19-s − 3.80·20-s − 1.26·21-s + 2.94·22-s + 7.20·23-s − 2.60·24-s + 9.49·25-s + 1.21·26-s − 1.98·27-s + 0.487·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.50·3-s + 0.5·4-s − 1.70·5-s − 1.06·6-s + 0.184·7-s + 0.353·8-s + 1.25·9-s − 1.20·10-s + 0.887·11-s − 0.750·12-s + 0.336·13-s + 0.130·14-s + 2.55·15-s + 0.250·16-s + 0.773·17-s + 0.886·18-s − 0.464·19-s − 0.851·20-s − 0.276·21-s + 0.627·22-s + 1.50·23-s − 0.530·24-s + 1.89·25-s + 0.238·26-s − 0.381·27-s + 0.0921·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $1$
Analytic conductor: \(4.29595\)
Root analytic conductor: \(2.07266\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 538,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.063365054\)
\(L(\frac12)\) \(\approx\) \(1.063365054\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
269 \( 1 + T \)
good3 \( 1 + 2.60T + 3T^{2} \)
5 \( 1 + 3.80T + 5T^{2} \)
7 \( 1 - 0.487T + 7T^{2} \)
11 \( 1 - 2.94T + 11T^{2} \)
13 \( 1 - 1.21T + 13T^{2} \)
17 \( 1 - 3.19T + 17T^{2} \)
19 \( 1 + 2.02T + 19T^{2} \)
23 \( 1 - 7.20T + 23T^{2} \)
29 \( 1 - 3.48T + 29T^{2} \)
31 \( 1 + 5.14T + 31T^{2} \)
37 \( 1 - 1.03T + 37T^{2} \)
41 \( 1 - 8.43T + 41T^{2} \)
43 \( 1 + 1.24T + 43T^{2} \)
47 \( 1 - 4.41T + 47T^{2} \)
53 \( 1 - 1.19T + 53T^{2} \)
59 \( 1 + 12.1T + 59T^{2} \)
61 \( 1 - 10.2T + 61T^{2} \)
67 \( 1 + 11.3T + 67T^{2} \)
71 \( 1 - 8.87T + 71T^{2} \)
73 \( 1 - 9.05T + 73T^{2} \)
79 \( 1 + 7.41T + 79T^{2} \)
83 \( 1 - 6.48T + 83T^{2} \)
89 \( 1 - 16.3T + 89T^{2} \)
97 \( 1 + 2.51T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.19644030533586092061710222292, −10.54301832860961326102753022770, −9.000030284264886444970901724103, −7.80331137287371795076369539209, −6.99217284471979371273258466452, −6.18227294914225508366460331147, −5.06572268747185624020716272143, −4.31351821819993856470546674432, −3.37955444457589713494500281434, −0.931043460744811363302608519953, 0.931043460744811363302608519953, 3.37955444457589713494500281434, 4.31351821819993856470546674432, 5.06572268747185624020716272143, 6.18227294914225508366460331147, 6.99217284471979371273258466452, 7.80331137287371795076369539209, 9.000030284264886444970901724103, 10.54301832860961326102753022770, 11.19644030533586092061710222292

Graph of the $Z$-function along the critical line