Properties

Label 2-535-535.534-c0-0-4
Degree $2$
Conductor $535$
Sign $1$
Analytic cond. $0.266999$
Root an. cond. $0.516720$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.24·2-s + 0.554·4-s + 5-s − 0.445·7-s − 0.554·8-s + 9-s + 1.24·10-s − 1.80·11-s − 0.554·14-s − 1.24·16-s − 1.80·17-s + 1.24·18-s + 1.24·19-s + 0.554·20-s − 2.24·22-s + 25-s − 0.246·28-s + 1.24·29-s − 0.999·32-s − 2.24·34-s − 0.445·35-s + 0.554·36-s + 1.55·38-s − 0.554·40-s − 0.445·41-s − 1.80·43-s − 0.999·44-s + ⋯
L(s)  = 1  + 1.24·2-s + 0.554·4-s + 5-s − 0.445·7-s − 0.554·8-s + 9-s + 1.24·10-s − 1.80·11-s − 0.554·14-s − 1.24·16-s − 1.80·17-s + 1.24·18-s + 1.24·19-s + 0.554·20-s − 2.24·22-s + 25-s − 0.246·28-s + 1.24·29-s − 0.999·32-s − 2.24·34-s − 0.445·35-s + 0.554·36-s + 1.55·38-s − 0.554·40-s − 0.445·41-s − 1.80·43-s − 0.999·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 535 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 535 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(535\)    =    \(5 \cdot 107\)
Sign: $1$
Analytic conductor: \(0.266999\)
Root analytic conductor: \(0.516720\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{535} (534, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 535,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.594961791\)
\(L(\frac12)\) \(\approx\) \(1.594961791\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
107 \( 1 - T \)
good2 \( 1 - 1.24T + T^{2} \)
3 \( 1 - T^{2} \)
7 \( 1 + 0.445T + T^{2} \)
11 \( 1 + 1.80T + T^{2} \)
13 \( 1 - T^{2} \)
17 \( 1 + 1.80T + T^{2} \)
19 \( 1 - 1.24T + T^{2} \)
23 \( 1 - T^{2} \)
29 \( 1 - 1.24T + T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 + 0.445T + T^{2} \)
43 \( 1 + 1.80T + T^{2} \)
47 \( 1 - T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 + 0.445T + T^{2} \)
67 \( 1 - 1.24T + T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - 1.24T + T^{2} \)
79 \( 1 + 0.445T + T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 - 1.24T + T^{2} \)
97 \( 1 + 0.445T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.09542043425084151235893606274, −10.16491969189855020367638066021, −9.527908122818056024124474424087, −8.388477665810043337945709438901, −7.00750874914935526178488014842, −6.31872134854547838858742969326, −5.17162941320833479001921604540, −4.71807635874933895606621314285, −3.23337952857169682004924550635, −2.25262003142672894754897117258, 2.25262003142672894754897117258, 3.23337952857169682004924550635, 4.71807635874933895606621314285, 5.17162941320833479001921604540, 6.31872134854547838858742969326, 7.00750874914935526178488014842, 8.388477665810043337945709438901, 9.527908122818056024124474424087, 10.16491969189855020367638066021, 11.09542043425084151235893606274

Graph of the $Z$-function along the critical line