Properties

Label 2-5328-1.1-c1-0-25
Degree $2$
Conductor $5328$
Sign $1$
Analytic cond. $42.5442$
Root an. cond. $6.52259$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 7-s + 11-s − 6·13-s + 4·17-s + 8·19-s + 6·23-s − 25-s − 2·29-s + 4·31-s − 2·35-s − 37-s − 7·41-s − 2·43-s + 9·47-s − 6·49-s + 3·53-s + 2·55-s − 12·59-s + 4·61-s − 12·65-s + 7·71-s + 7·73-s − 77-s + 3·83-s + 8·85-s + 12·89-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.377·7-s + 0.301·11-s − 1.66·13-s + 0.970·17-s + 1.83·19-s + 1.25·23-s − 1/5·25-s − 0.371·29-s + 0.718·31-s − 0.338·35-s − 0.164·37-s − 1.09·41-s − 0.304·43-s + 1.31·47-s − 6/7·49-s + 0.412·53-s + 0.269·55-s − 1.56·59-s + 0.512·61-s − 1.48·65-s + 0.830·71-s + 0.819·73-s − 0.113·77-s + 0.329·83-s + 0.867·85-s + 1.27·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5328\)    =    \(2^{4} \cdot 3^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(42.5442\)
Root analytic conductor: \(6.52259\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5328,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.292978806\)
\(L(\frac12)\) \(\approx\) \(2.292978806\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
37 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 - T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
41 \( 1 + 7 T + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 - 3 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 4 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 - 7 T + p T^{2} \)
73 \( 1 - 7 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 3 T + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.070458782324392630483813369831, −7.36158007054405283647547491277, −6.86956114686397304905880369887, −5.93411476803816462364067798961, −5.26249447883632910171765768247, −4.79513810980139595130903330602, −3.46408054935867786603187582223, −2.88308379745334425392558663656, −1.90541685045441435373462383488, −0.830738487980047601815971212772, 0.830738487980047601815971212772, 1.90541685045441435373462383488, 2.88308379745334425392558663656, 3.46408054935867786603187582223, 4.79513810980139595130903330602, 5.26249447883632910171765768247, 5.93411476803816462364067798961, 6.86956114686397304905880369887, 7.36158007054405283647547491277, 8.070458782324392630483813369831

Graph of the $Z$-function along the critical line