Properties

Label 2-531-531.128-c1-0-12
Degree $2$
Conductor $531$
Sign $0.854 - 0.520i$
Analytic cond. $4.24005$
Root an. cond. $2.05913$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.57 − 1.99i)2-s + (1.54 + 0.780i)3-s + (−1.03 + 4.30i)4-s + (−0.347 + 1.90i)5-s + (−0.875 − 4.30i)6-s + (0.530 − 0.293i)7-s + (5.59 − 2.58i)8-s + (1.78 + 2.41i)9-s + (4.33 − 2.29i)10-s + (−1.87 − 1.22i)11-s + (−4.95 + 5.85i)12-s + (−1.29 + 1.18i)13-s + (−1.41 − 0.594i)14-s + (−2.02 + 2.67i)15-s + (−6.03 − 3.06i)16-s + (−1.21 − 2.02i)17-s + ⋯
L(s)  = 1  + (−1.11 − 1.40i)2-s + (0.892 + 0.450i)3-s + (−0.515 + 2.15i)4-s + (−0.155 + 0.851i)5-s + (−0.357 − 1.75i)6-s + (0.200 − 0.110i)7-s + (1.97 − 0.914i)8-s + (0.593 + 0.804i)9-s + (1.37 − 0.726i)10-s + (−0.566 − 0.369i)11-s + (−1.43 + 1.69i)12-s + (−0.359 + 0.328i)13-s + (−0.378 − 0.158i)14-s + (−0.522 + 0.690i)15-s + (−1.50 − 0.765i)16-s + (−0.295 − 0.490i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 531 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.854 - 0.520i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 531 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.854 - 0.520i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(531\)    =    \(3^{2} \cdot 59\)
Sign: $0.854 - 0.520i$
Analytic conductor: \(4.24005\)
Root analytic conductor: \(2.05913\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{531} (128, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 531,\ (\ :1/2),\ 0.854 - 0.520i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.840189 + 0.235651i\)
\(L(\frac12)\) \(\approx\) \(0.840189 + 0.235651i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.54 - 0.780i)T \)
59 \( 1 + (-7.67 - 0.314i)T \)
good2 \( 1 + (1.57 + 1.99i)T + (-0.465 + 1.94i)T^{2} \)
5 \( 1 + (0.347 - 1.90i)T + (-4.67 - 1.76i)T^{2} \)
7 \( 1 + (-0.530 + 0.293i)T + (3.71 - 5.93i)T^{2} \)
11 \( 1 + (1.87 + 1.22i)T + (4.43 + 10.0i)T^{2} \)
13 \( 1 + (1.29 - 1.18i)T + (1.17 - 12.9i)T^{2} \)
17 \( 1 + (1.21 + 2.02i)T + (-7.96 + 15.0i)T^{2} \)
19 \( 1 + (1.95 - 7.03i)T + (-16.2 - 9.79i)T^{2} \)
23 \( 1 + (-0.834 + 1.72i)T + (-14.2 - 18.0i)T^{2} \)
29 \( 1 + (0.952 - 6.54i)T + (-27.7 - 8.26i)T^{2} \)
31 \( 1 + (-5.02 - 4.93i)T + (0.559 + 30.9i)T^{2} \)
37 \( 1 + (2.09 - 4.53i)T + (-23.9 - 28.1i)T^{2} \)
41 \( 1 + (-0.0251 + 0.347i)T + (-40.5 - 5.90i)T^{2} \)
43 \( 1 + (0.757 - 1.49i)T + (-25.4 - 34.6i)T^{2} \)
47 \( 1 + (5.28 - 0.964i)T + (43.9 - 16.6i)T^{2} \)
53 \( 1 + (2.02 + 1.07i)T + (29.7 + 43.8i)T^{2} \)
61 \( 1 + (-11.8 + 9.35i)T + (14.1 - 59.3i)T^{2} \)
67 \( 1 + (0.209 - 0.297i)T + (-22.5 - 63.0i)T^{2} \)
71 \( 1 + (-2.39 + 2.03i)T + (11.4 - 70.0i)T^{2} \)
73 \( 1 + (8.08 + 10.6i)T + (-19.5 + 70.3i)T^{2} \)
79 \( 1 + (-5.23 + 11.8i)T + (-53.2 - 58.3i)T^{2} \)
83 \( 1 + (-0.0455 + 0.226i)T + (-76.5 - 32.1i)T^{2} \)
89 \( 1 + (-0.730 - 1.83i)T + (-64.6 + 61.2i)T^{2} \)
97 \( 1 + (-0.244 - 0.583i)T + (-67.9 + 69.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.57788358882025543580691606496, −10.25378959397658570267099650829, −9.334612398842289102710923866042, −8.438995974254876349742146301347, −7.87682330699494515110983654113, −6.83075938754433664246285414737, −4.78384565419673741611362173290, −3.50395744779540186243098107418, −2.89041179917845561582376720243, −1.75441490031071684689649793930, 0.66984524885992744079177381087, 2.30643016420406108652986665375, 4.40322018353285703680809724103, 5.40132276928560079538734855831, 6.61938571773105819678408915180, 7.35982832747810373392375305223, 8.240551107505703208662953439647, 8.614223571480920620302264013771, 9.491292477569976686341408229019, 10.17047201097741925079552862184

Graph of the $Z$-function along the critical line