Properties

Label 2-531-1.1-c7-0-132
Degree $2$
Conductor $531$
Sign $1$
Analytic cond. $165.876$
Root an. cond. $12.8793$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 21.2·2-s + 321.·4-s + 386.·5-s + 166.·7-s + 4.10e3·8-s + 8.20e3·10-s − 4.09e3·11-s + 1.18e4·13-s + 3.53e3·14-s + 4.58e4·16-s + 6.00e3·17-s − 3.62e4·19-s + 1.24e5·20-s − 8.67e4·22-s + 3.15e4·23-s + 7.14e4·25-s + 2.50e5·26-s + 5.36e4·28-s + 646.·29-s + 1.14e5·31-s + 4.47e5·32-s + 1.27e5·34-s + 6.45e4·35-s + 3.90e5·37-s − 7.69e5·38-s + 1.58e6·40-s + 4.13e5·41-s + ⋯
L(s)  = 1  + 1.87·2-s + 2.51·4-s + 1.38·5-s + 0.183·7-s + 2.83·8-s + 2.59·10-s − 0.926·11-s + 1.49·13-s + 0.344·14-s + 2.80·16-s + 0.296·17-s − 1.21·19-s + 3.47·20-s − 1.73·22-s + 0.541·23-s + 0.914·25-s + 2.79·26-s + 0.461·28-s + 0.00492·29-s + 0.687·31-s + 2.41·32-s + 0.555·34-s + 0.254·35-s + 1.26·37-s − 2.27·38-s + 3.92·40-s + 0.936·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 531 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 531 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(531\)    =    \(3^{2} \cdot 59\)
Sign: $1$
Analytic conductor: \(165.876\)
Root analytic conductor: \(12.8793\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 531,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(12.19419865\)
\(L(\frac12)\) \(\approx\) \(12.19419865\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
59 \( 1 + 2.05e5T \)
good2 \( 1 - 21.2T + 128T^{2} \)
5 \( 1 - 386.T + 7.81e4T^{2} \)
7 \( 1 - 166.T + 8.23e5T^{2} \)
11 \( 1 + 4.09e3T + 1.94e7T^{2} \)
13 \( 1 - 1.18e4T + 6.27e7T^{2} \)
17 \( 1 - 6.00e3T + 4.10e8T^{2} \)
19 \( 1 + 3.62e4T + 8.93e8T^{2} \)
23 \( 1 - 3.15e4T + 3.40e9T^{2} \)
29 \( 1 - 646.T + 1.72e10T^{2} \)
31 \( 1 - 1.14e5T + 2.75e10T^{2} \)
37 \( 1 - 3.90e5T + 9.49e10T^{2} \)
41 \( 1 - 4.13e5T + 1.94e11T^{2} \)
43 \( 1 + 3.14e5T + 2.71e11T^{2} \)
47 \( 1 - 1.01e6T + 5.06e11T^{2} \)
53 \( 1 + 9.99e5T + 1.17e12T^{2} \)
61 \( 1 - 2.14e6T + 3.14e12T^{2} \)
67 \( 1 + 4.67e6T + 6.06e12T^{2} \)
71 \( 1 + 1.57e6T + 9.09e12T^{2} \)
73 \( 1 + 3.71e6T + 1.10e13T^{2} \)
79 \( 1 - 5.47e6T + 1.92e13T^{2} \)
83 \( 1 + 7.86e6T + 2.71e13T^{2} \)
89 \( 1 - 1.83e6T + 4.42e13T^{2} \)
97 \( 1 + 5.62e5T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.13234045566789743017673249642, −8.753767142081002938941075875664, −7.57567269140811436436397576311, −6.24885494580598670214876265576, −6.06100313646674192284803975090, −5.09854023261302135305154268313, −4.21232750180491605477489120553, −3.01504373421481699226895322356, −2.23372422426676125493668351538, −1.27336063236825808287940917893, 1.27336063236825808287940917893, 2.23372422426676125493668351538, 3.01504373421481699226895322356, 4.21232750180491605477489120553, 5.09854023261302135305154268313, 6.06100313646674192284803975090, 6.24885494580598670214876265576, 7.57567269140811436436397576311, 8.753767142081002938941075875664, 10.13234045566789743017673249642

Graph of the $Z$-function along the critical line