L(s) = 1 | + 21.6·2-s + 340.·4-s + 399.·5-s − 1.78e3·7-s + 4.59e3·8-s + 8.63e3·10-s + 204.·11-s + 7.46e3·13-s − 3.85e4·14-s + 5.58e4·16-s − 2.07e3·17-s + 3.86e4·19-s + 1.35e5·20-s + 4.41e3·22-s + 4.76e4·23-s + 8.11e4·25-s + 1.61e5·26-s − 6.05e5·28-s − 2.23e5·29-s + 2.73e5·31-s + 6.20e5·32-s − 4.48e4·34-s − 7.10e5·35-s − 5.45e5·37-s + 8.35e5·38-s + 1.83e6·40-s + 5.21e5·41-s + ⋯ |
L(s) = 1 | + 1.91·2-s + 2.65·4-s + 1.42·5-s − 1.96·7-s + 3.17·8-s + 2.73·10-s + 0.0462·11-s + 0.942·13-s − 3.75·14-s + 3.40·16-s − 0.102·17-s + 1.29·19-s + 3.79·20-s + 0.0884·22-s + 0.815·23-s + 1.03·25-s + 1.80·26-s − 5.21·28-s − 1.70·29-s + 1.65·31-s + 3.34·32-s − 0.195·34-s − 2.80·35-s − 1.76·37-s + 2.47·38-s + 4.52·40-s + 1.18·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 531 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 531 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(10.78283595\) |
\(L(\frac12)\) |
\(\approx\) |
\(10.78283595\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 59 | \( 1 - 2.05e5T \) |
good | 2 | \( 1 - 21.6T + 128T^{2} \) |
| 5 | \( 1 - 399.T + 7.81e4T^{2} \) |
| 7 | \( 1 + 1.78e3T + 8.23e5T^{2} \) |
| 11 | \( 1 - 204.T + 1.94e7T^{2} \) |
| 13 | \( 1 - 7.46e3T + 6.27e7T^{2} \) |
| 17 | \( 1 + 2.07e3T + 4.10e8T^{2} \) |
| 19 | \( 1 - 3.86e4T + 8.93e8T^{2} \) |
| 23 | \( 1 - 4.76e4T + 3.40e9T^{2} \) |
| 29 | \( 1 + 2.23e5T + 1.72e10T^{2} \) |
| 31 | \( 1 - 2.73e5T + 2.75e10T^{2} \) |
| 37 | \( 1 + 5.45e5T + 9.49e10T^{2} \) |
| 41 | \( 1 - 5.21e5T + 1.94e11T^{2} \) |
| 43 | \( 1 - 3.27e5T + 2.71e11T^{2} \) |
| 47 | \( 1 - 2.41e4T + 5.06e11T^{2} \) |
| 53 | \( 1 - 1.06e6T + 1.17e12T^{2} \) |
| 61 | \( 1 - 1.08e6T + 3.14e12T^{2} \) |
| 67 | \( 1 + 5.57e4T + 6.06e12T^{2} \) |
| 71 | \( 1 - 8.51e5T + 9.09e12T^{2} \) |
| 73 | \( 1 - 3.44e6T + 1.10e13T^{2} \) |
| 79 | \( 1 + 8.05e6T + 1.92e13T^{2} \) |
| 83 | \( 1 + 2.05e6T + 2.71e13T^{2} \) |
| 89 | \( 1 - 1.68e6T + 4.42e13T^{2} \) |
| 97 | \( 1 - 1.14e7T + 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.919001043558634489362967636589, −9.104690042615760026248246853601, −7.21095307015551234461221451844, −6.54364962580712952823425909319, −5.85298858165566476283427289774, −5.35850199641265882214511554434, −3.88635987323666227604642525407, −3.14526195594466263523909600591, −2.38514470028367200083117757569, −1.12772725536828263795942129337,
1.12772725536828263795942129337, 2.38514470028367200083117757569, 3.14526195594466263523909600591, 3.88635987323666227604642525407, 5.35850199641265882214511554434, 5.85298858165566476283427289774, 6.54364962580712952823425909319, 7.21095307015551234461221451844, 9.104690042615760026248246853601, 9.919001043558634489362967636589