Properties

Label 2-531-1.1-c7-0-107
Degree $2$
Conductor $531$
Sign $-1$
Analytic cond. $165.876$
Root an. cond. $12.8793$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.04·2-s − 126.·4-s + 45.6·5-s − 399.·7-s − 266.·8-s + 47.7·10-s + 7.63e3·11-s − 1.07e4·13-s − 417.·14-s + 1.59e4·16-s − 1.62e4·17-s − 1.16e3·19-s − 5.79e3·20-s + 7.98e3·22-s + 4.86e4·23-s − 7.60e4·25-s − 1.13e4·26-s + 5.06e4·28-s − 1.18e4·29-s − 6.29e4·31-s + 5.08e4·32-s − 1.70e4·34-s − 1.82e4·35-s + 7.93e4·37-s − 1.22e3·38-s − 1.21e4·40-s + 6.34e5·41-s + ⋯
L(s)  = 1  + 0.0925·2-s − 0.991·4-s + 0.163·5-s − 0.439·7-s − 0.184·8-s + 0.0151·10-s + 1.72·11-s − 1.36·13-s − 0.0406·14-s + 0.974·16-s − 0.803·17-s − 0.0389·19-s − 0.161·20-s + 0.159·22-s + 0.833·23-s − 0.973·25-s − 0.126·26-s + 0.435·28-s − 0.0902·29-s − 0.379·31-s + 0.274·32-s − 0.0743·34-s − 0.0717·35-s + 0.257·37-s − 0.00360·38-s − 0.0300·40-s + 1.43·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 531 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 531 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(531\)    =    \(3^{2} \cdot 59\)
Sign: $-1$
Analytic conductor: \(165.876\)
Root analytic conductor: \(12.8793\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 531,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
59 \( 1 + 2.05e5T \)
good2 \( 1 - 1.04T + 128T^{2} \)
5 \( 1 - 45.6T + 7.81e4T^{2} \)
7 \( 1 + 399.T + 8.23e5T^{2} \)
11 \( 1 - 7.63e3T + 1.94e7T^{2} \)
13 \( 1 + 1.07e4T + 6.27e7T^{2} \)
17 \( 1 + 1.62e4T + 4.10e8T^{2} \)
19 \( 1 + 1.16e3T + 8.93e8T^{2} \)
23 \( 1 - 4.86e4T + 3.40e9T^{2} \)
29 \( 1 + 1.18e4T + 1.72e10T^{2} \)
31 \( 1 + 6.29e4T + 2.75e10T^{2} \)
37 \( 1 - 7.93e4T + 9.49e10T^{2} \)
41 \( 1 - 6.34e5T + 1.94e11T^{2} \)
43 \( 1 - 5.92e5T + 2.71e11T^{2} \)
47 \( 1 - 1.82e4T + 5.06e11T^{2} \)
53 \( 1 - 5.82e5T + 1.17e12T^{2} \)
61 \( 1 - 3.18e6T + 3.14e12T^{2} \)
67 \( 1 - 2.62e6T + 6.06e12T^{2} \)
71 \( 1 + 8.35e5T + 9.09e12T^{2} \)
73 \( 1 - 7.93e5T + 1.10e13T^{2} \)
79 \( 1 - 1.48e6T + 1.92e13T^{2} \)
83 \( 1 + 7.81e6T + 2.71e13T^{2} \)
89 \( 1 + 7.75e5T + 4.42e13T^{2} \)
97 \( 1 - 7.61e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.484815782090185969434944993079, −8.610688079408259901934737311886, −7.40298141147057829792955858082, −6.50974713035359832295729775400, −5.49652936581499257572582462180, −4.42652192904734999356984981987, −3.76571819221071710767441142312, −2.43239886254641481750617467239, −1.06204956081792448616983201514, 0, 1.06204956081792448616983201514, 2.43239886254641481750617467239, 3.76571819221071710767441142312, 4.42652192904734999356984981987, 5.49652936581499257572582462180, 6.50974713035359832295729775400, 7.40298141147057829792955858082, 8.610688079408259901934737311886, 9.484815782090185969434944993079

Graph of the $Z$-function along the critical line