Properties

Label 2-528-1.1-c7-0-22
Degree $2$
Conductor $528$
Sign $1$
Analytic cond. $164.939$
Root an. cond. $12.8428$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 27·3-s − 410·5-s + 1.02e3·7-s + 729·9-s + 1.33e3·11-s + 1.29e4·13-s + 1.10e4·15-s + 1.70e4·17-s + 5.41e4·19-s − 2.77e4·21-s + 1.14e4·23-s + 8.99e4·25-s − 1.96e4·27-s − 1.86e5·29-s + 1.88e5·31-s − 3.59e4·33-s − 4.21e5·35-s + 3.95e5·37-s − 3.49e5·39-s − 4.75e4·41-s − 6.02e5·43-s − 2.98e5·45-s + 6.47e5·47-s + 2.33e5·49-s − 4.60e5·51-s − 1.31e6·53-s − 5.45e5·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.46·5-s + 1.13·7-s + 1/3·9-s + 0.301·11-s + 1.63·13-s + 0.846·15-s + 0.842·17-s + 1.81·19-s − 0.654·21-s + 0.196·23-s + 1.15·25-s − 0.192·27-s − 1.42·29-s + 1.13·31-s − 0.174·33-s − 1.66·35-s + 1.28·37-s − 0.944·39-s − 0.107·41-s − 1.15·43-s − 0.488·45-s + 0.909·47-s + 0.283·49-s − 0.486·51-s − 1.21·53-s − 0.442·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 528 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(528\)    =    \(2^{4} \cdot 3 \cdot 11\)
Sign: $1$
Analytic conductor: \(164.939\)
Root analytic conductor: \(12.8428\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 528,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(2.091396415\)
\(L(\frac12)\) \(\approx\) \(2.091396415\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p^{3} T \)
11 \( 1 - p^{3} T \)
good5 \( 1 + 82 p T + p^{7} T^{2} \)
7 \( 1 - 1028 T + p^{7} T^{2} \)
13 \( 1 - 12958 T + p^{7} T^{2} \)
17 \( 1 - 17062 T + p^{7} T^{2} \)
19 \( 1 - 54168 T + p^{7} T^{2} \)
23 \( 1 - 11488 T + p^{7} T^{2} \)
29 \( 1 + 186654 T + p^{7} T^{2} \)
31 \( 1 - 188672 T + p^{7} T^{2} \)
37 \( 1 - 395886 T + p^{7} T^{2} \)
41 \( 1 + 47546 T + p^{7} T^{2} \)
43 \( 1 + 602088 T + p^{7} T^{2} \)
47 \( 1 - 647200 T + p^{7} T^{2} \)
53 \( 1 + 1312722 T + p^{7} T^{2} \)
59 \( 1 - 2681140 T + p^{7} T^{2} \)
61 \( 1 - 551190 T + p^{7} T^{2} \)
67 \( 1 + 459260 T + p^{7} T^{2} \)
71 \( 1 - 18072 T + p^{7} T^{2} \)
73 \( 1 + 426062 T + p^{7} T^{2} \)
79 \( 1 + 297764 T + p^{7} T^{2} \)
83 \( 1 + 5684028 T + p^{7} T^{2} \)
89 \( 1 + 6342966 T + p^{7} T^{2} \)
97 \( 1 - 16651586 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.780289271788683821494120990911, −8.558082437740715769120359431367, −7.88679514690283763162928700376, −7.23239936424328221424302536498, −5.95093869394717217914711902472, −5.02384883181829298952184809546, −4.04031829721025046353634687962, −3.29768065615376745019709338995, −1.38303212758836796694098902324, −0.75540283288340822806579044615, 0.75540283288340822806579044615, 1.38303212758836796694098902324, 3.29768065615376745019709338995, 4.04031829721025046353634687962, 5.02384883181829298952184809546, 5.95093869394717217914711902472, 7.23239936424328221424302536498, 7.88679514690283763162928700376, 8.558082437740715769120359431367, 9.780289271788683821494120990911

Graph of the $Z$-function along the critical line