L(s) = 1 | + 4.23i·2-s + 3i·3-s − 9.94·4-s − 12.7·6-s + 7i·7-s − 8.23i·8-s − 9·9-s − 41.5·11-s − 29.8i·12-s + 88.9i·13-s − 29.6·14-s − 44.6·16-s + 120. i·17-s − 38.1i·18-s + 112.·19-s + ⋯ |
L(s) = 1 | + 1.49i·2-s + 0.577i·3-s − 1.24·4-s − 0.864·6-s + 0.377i·7-s − 0.363i·8-s − 0.333·9-s − 1.13·11-s − 0.717i·12-s + 1.89i·13-s − 0.566·14-s − 0.697·16-s + 1.71i·17-s − 0.499i·18-s + 1.35·19-s + ⋯ |
Λ(s)=(=(525s/2ΓC(s)L(s)(0.447+0.894i)Λ(4−s)
Λ(s)=(=(525s/2ΓC(s+3/2)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
525
= 3⋅52⋅7
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
30.9760 |
Root analytic conductor: |
5.56560 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ525(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 525, ( :3/2), 0.447+0.894i)
|
Particular Values
L(2) |
≈ |
0.9432985033 |
L(21) |
≈ |
0.9432985033 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3iT |
| 5 | 1 |
| 7 | 1−7iT |
good | 2 | 1−4.23iT−8T2 |
| 11 | 1+41.5T+1.33e3T2 |
| 13 | 1−88.9iT−2.19e3T2 |
| 17 | 1−120.iT−4.91e3T2 |
| 19 | 1−112.T+6.85e3T2 |
| 23 | 1+115.iT−1.21e4T2 |
| 29 | 1−144.T+2.43e4T2 |
| 31 | 1+258.T+2.97e4T2 |
| 37 | 1+48.3iT−5.06e4T2 |
| 41 | 1−200.T+6.89e4T2 |
| 43 | 1+218.iT−7.95e4T2 |
| 47 | 1+575.iT−1.03e5T2 |
| 53 | 1+184.iT−1.48e5T2 |
| 59 | 1−151.T+2.05e5T2 |
| 61 | 1+529.T+2.26e5T2 |
| 67 | 1+1.28iT−3.00e5T2 |
| 71 | 1+61.4T+3.57e5T2 |
| 73 | 1−484.iT−3.89e5T2 |
| 79 | 1+878.T+4.93e5T2 |
| 83 | 1−491.iT−5.71e5T2 |
| 89 | 1−415.T+7.04e5T2 |
| 97 | 1−1.03e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.04569102467808904206876435311, −10.10178087538070155270015979860, −9.019983068034292439466931812387, −8.505025928829268358651699910681, −7.50474014685843443155313603229, −6.59731488510146135835771490082, −5.70485548349316412714677842163, −4.90853104921410795360070234082, −3.88900486469867854799395718820, −2.18498110468207537380224385567,
0.30721832406503930222481964623, 1.21100416868405288663222589763, 2.83528033427096463647666197159, 3.13253116104481272972588001508, 4.83976750361355594094720533691, 5.68003048887681946222963262919, 7.38996629216998087385113079209, 7.76712190599655738149455224128, 9.215197978436076251178106851999, 9.948035445078937996404182533189