Properties

Label 2-525-175.144-c1-0-2
Degree $2$
Conductor $525$
Sign $0.974 + 0.222i$
Analytic cond. $4.19214$
Root an. cond. $2.04747$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.06 − 1.85i)2-s + (−0.994 + 0.104i)3-s + (0.595 + 5.66i)4-s + (−2.11 − 0.713i)5-s + (2.24 + 1.63i)6-s + (−1.97 − 1.75i)7-s + (6.02 − 8.28i)8-s + (0.978 − 0.207i)9-s + (3.04 + 5.40i)10-s + (−5.77 − 1.22i)11-s + (−1.18 − 5.56i)12-s + (−1.69 − 0.550i)13-s + (0.815 + 7.29i)14-s + (2.18 + 0.487i)15-s + (−16.6 + 3.54i)16-s + (−0.431 − 0.970i)17-s + ⋯
L(s)  = 1  + (−1.45 − 1.31i)2-s + (−0.574 + 0.0603i)3-s + (0.297 + 2.83i)4-s + (−0.947 − 0.318i)5-s + (0.916 + 0.665i)6-s + (−0.747 − 0.664i)7-s + (2.12 − 2.93i)8-s + (0.326 − 0.0693i)9-s + (0.962 + 1.70i)10-s + (−1.74 − 0.370i)11-s + (−0.341 − 1.60i)12-s + (−0.470 − 0.152i)13-s + (0.218 + 1.94i)14-s + (0.563 + 0.125i)15-s + (−4.16 + 0.885i)16-s + (−0.104 − 0.235i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.974 + 0.222i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.974 + 0.222i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(525\)    =    \(3 \cdot 5^{2} \cdot 7\)
Sign: $0.974 + 0.222i$
Analytic conductor: \(4.19214\)
Root analytic conductor: \(2.04747\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{525} (319, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 525,\ (\ :1/2),\ 0.974 + 0.222i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.160559 - 0.0180694i\)
\(L(\frac12)\) \(\approx\) \(0.160559 - 0.0180694i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.994 - 0.104i)T \)
5 \( 1 + (2.11 + 0.713i)T \)
7 \( 1 + (1.97 + 1.75i)T \)
good2 \( 1 + (2.06 + 1.85i)T + (0.209 + 1.98i)T^{2} \)
11 \( 1 + (5.77 + 1.22i)T + (10.0 + 4.47i)T^{2} \)
13 \( 1 + (1.69 + 0.550i)T + (10.5 + 7.64i)T^{2} \)
17 \( 1 + (0.431 + 0.970i)T + (-11.3 + 12.6i)T^{2} \)
19 \( 1 + (0.320 - 3.04i)T + (-18.5 - 3.95i)T^{2} \)
23 \( 1 + (-0.664 - 0.598i)T + (2.40 + 22.8i)T^{2} \)
29 \( 1 + (-5.67 + 4.12i)T + (8.96 - 27.5i)T^{2} \)
31 \( 1 + (-1.21 + 0.538i)T + (20.7 - 23.0i)T^{2} \)
37 \( 1 + (0.798 + 3.75i)T + (-33.8 + 15.0i)T^{2} \)
41 \( 1 + (2.22 - 6.83i)T + (-33.1 - 24.0i)T^{2} \)
43 \( 1 - 3.18iT - 43T^{2} \)
47 \( 1 + (3.01 - 6.76i)T + (-31.4 - 34.9i)T^{2} \)
53 \( 1 + (-2.90 + 0.305i)T + (51.8 - 11.0i)T^{2} \)
59 \( 1 + (-0.739 - 0.821i)T + (-6.16 + 58.6i)T^{2} \)
61 \( 1 + (-8.98 + 9.97i)T + (-6.37 - 60.6i)T^{2} \)
67 \( 1 + (2.66 + 5.98i)T + (-44.8 + 49.7i)T^{2} \)
71 \( 1 + (-2.66 + 1.93i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (-1.43 + 6.74i)T + (-66.6 - 29.6i)T^{2} \)
79 \( 1 + (-14.3 - 6.38i)T + (52.8 + 58.7i)T^{2} \)
83 \( 1 + (-0.236 + 0.325i)T + (-25.6 - 78.9i)T^{2} \)
89 \( 1 + (9.16 - 10.1i)T + (-9.30 - 88.5i)T^{2} \)
97 \( 1 + (-4.20 - 5.79i)T + (-29.9 + 92.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.72112748807422056123023141898, −10.13643449430701395290007015058, −9.371447260847086692749163989673, −7.956788436373316074106618748610, −7.903953626332265028822285147907, −6.68914955424089339868071670937, −4.79361455579450861998124134456, −3.64867523640876970880629901773, −2.68163734494056993013213584715, −0.73420891342561945715740180310, 0.26250966449618872561195361678, 2.51414424079815607581954233563, 4.84731287566403045794657424950, 5.56411324571306571349633092165, 6.79397092692751844344069356871, 7.14806498257991803716687311446, 8.204201081716539640289429594564, 8.819142840761586294130338041693, 10.10321541486994632953542208596, 10.39904683430686702949517092171

Graph of the $Z$-function along the critical line