L(s) = 1 | − 1.09·2-s + (0.323 + 1.70i)3-s − 0.791·4-s + (−0.355 − 1.87i)6-s + (2.44 − i)7-s + 3.06·8-s + (−2.79 + 1.09i)9-s + 3.06i·11-s + (−0.255 − 1.34i)12-s + 2.44·13-s + (−2.69 + 1.09i)14-s − 1.79·16-s + 2.69i·17-s + (3.06 − 1.20i)18-s − 4.38i·19-s + ⋯ |
L(s) = 1 | − 0.777·2-s + (0.186 + 0.982i)3-s − 0.395·4-s + (−0.144 − 0.763i)6-s + (0.925 − 0.377i)7-s + 1.08·8-s + (−0.930 + 0.366i)9-s + 0.925i·11-s + (−0.0737 − 0.388i)12-s + 0.679·13-s + (−0.719 + 0.293i)14-s − 0.447·16-s + 0.653i·17-s + (0.723 − 0.284i)18-s − 1.00i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.111 - 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.111 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.616153 + 0.689029i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.616153 + 0.689029i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.323 - 1.70i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-2.44 + i)T \) |
good | 2 | \( 1 + 1.09T + 2T^{2} \) |
| 11 | \( 1 - 3.06iT - 11T^{2} \) |
| 13 | \( 1 - 2.44T + 13T^{2} \) |
| 17 | \( 1 - 2.69iT - 17T^{2} \) |
| 19 | \( 1 + 4.38iT - 19T^{2} \) |
| 23 | \( 1 - 5.26T + 23T^{2} \) |
| 29 | \( 1 - 5.26iT - 29T^{2} \) |
| 31 | \( 1 - 6.83iT - 31T^{2} \) |
| 37 | \( 1 - 8.58iT - 37T^{2} \) |
| 41 | \( 1 + 10.2T + 41T^{2} \) |
| 43 | \( 1 - 6.58iT - 43T^{2} \) |
| 47 | \( 1 - 2.69iT - 47T^{2} \) |
| 53 | \( 1 + 3.93T + 53T^{2} \) |
| 59 | \( 1 + 7.51T + 59T^{2} \) |
| 61 | \( 1 + 6.83iT - 61T^{2} \) |
| 67 | \( 1 - 4.16iT - 67T^{2} \) |
| 71 | \( 1 - 3.06iT - 71T^{2} \) |
| 73 | \( 1 - 16.1T + 73T^{2} \) |
| 79 | \( 1 + 0.582T + 79T^{2} \) |
| 83 | \( 1 + 15.5iT - 83T^{2} \) |
| 89 | \( 1 - 7.51T + 89T^{2} \) |
| 97 | \( 1 - 11.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.74291524081581183741463249124, −10.24016913604915963668814315653, −9.230539670301388692039409617633, −8.630942104137068477181844126139, −7.88469856198650617324458870271, −6.76126748113426243016770535431, −4.94136395789514421132196476977, −4.72261686177246790873297109172, −3.38110662507074087999899644331, −1.50703478872330246170754156174,
0.790496798338438195516719997049, 2.04930744365160506444409857172, 3.66208082941647762765850933882, 5.16044681187479863854667454203, 6.07641155210349842967616788979, 7.38141699889761127649224929093, 8.093348190401457623250421818036, 8.674701637055155110648863285949, 9.410283173207150914955909502677, 10.72883620635928795584609752230